Searching for electrostatic fields : 3 results found | RSS Feed for this search
22.105 Electromagnetic Interactions (MIT) 22.105 Electromagnetic Interactions (MIT)
Description
Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic fields. Charged particle motion in those fields. Particle acceleration and focussing. Collisions with charged particles and with atoms. Electromagnetic waves, wave emission by accelerated particles, Bremsstrahlung. Compton scattering. Photoionization. Elementary applications to ranging, shielding, imaging, and radiation effects. Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic fields. Charged particle motion in those fields. Particle acceleration and focussing. Collisions with charged particles and with atoms. Electromagnetic waves, wave emission by accelerated particles, Bremsstrahlung. Compton scattering. Photoionization. Elementary applications to ranging, shielding, imaging, and radiation effects.Subjects
electromagnetism | | electromagnetism | | Maxwell's equations | | Maxwell's equations | | electrostatic fields | | electrostatic fields | | magnetostatic fields | | magnetostatic fields | | Charged particle motion | | Charged particle motion | | Particle acceleration | | Particle acceleration | | Electromagnetic waves | | Electromagnetic waves | | Bremsstrahlung | | Bremsstrahlung | | Compton scattering | | Compton scattering | | Photoionization | PhotoionizationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDG5434 Single Phase A.C. Circuits
Description
This unit is designed to enable learners to develop knowledge and understanding and apply basic electrical concepts and theorems to the solution of simple electrical problems. It also provides an opportunity to examine first order transient responses as found in RL and RC series circuits and to develop the necessary knowledge and skills to solve single-phase a.c. circuit problems using complex notation. Outcomes 1. Solve problems involving basic electrical concepts and theorems. 2. Solve single-phase a.c. circuit problems using complex notation.Subjects
DG54 34 | Basic electrical quantities | Circuit elements | Electromagnetic field | electrostatic fields | Ohm’s law | Waveforms | series circuit | parallel circuit | Kirchhoff’s laws | D.C. transients | R | L and C circuits | inductance | capacitance | Resistance | X: Engineering | ENGINEERING | SCQF Level 7License
Except where expressly indicated otherwise on the face of these materials (i) copyright in these materials is owned by the Scottish Qualification Authority (SQA), and (ii) none of these materials may be Used without the express, prior, written consent of the Colleges Open Learning Exchange Group (COLEG) and SQA, except if and to the extent that such Use is permitted under COLEG's conditions of Contribution and Use of Learning Materials through COLEG’s Repository, for the purposes of which these materials are COLEG Materials. Except where expressly indicated otherwise on the face of these materials (i) copyright in these materials is owned by the Scottish Qualification Authority (SQA), and (ii) none of these materials may be Used without the express, prior, written consent of the Colleges Open Learning Exchange Group (COLEG) and SQA, except if and to the extent that such Use is permitted under COLEG's conditions of Contribution and Use of Learning Materials through COLEG’s Repository, for the purposes of which these materials are COLEG Materials. Licensed to colleges in Scotland only Licensed to colleges in Scotland only http://content.resourceshare.ac.uk/xmlui/bitstream/handle/10949/17761/LicenceSQAMaterialsCOLEG.pdf?sequence=1 http://content.resourceshare.ac.uk/xmlui/bitstream/handle/10949/17761/LicenceSQAMaterialsCOLEG.pdf?sequence=1 SQA SQASite sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata22.105 Electromagnetic Interactions (MIT)
Description
Principles and applications of electromagnetism, starting from Maxwell's equations, with emphasis on phenomena important to nuclear engineering and radiation sciences. Solution methods for electrostatic and magnetostatic fields. Charged particle motion in those fields. Particle acceleration and focussing. Collisions with charged particles and with atoms. Electromagnetic waves, wave emission by accelerated particles, Bremsstrahlung. Compton scattering. Photoionization. Elementary applications to ranging, shielding, imaging, and radiation effects.Subjects
electromagnetism | | Maxwell's equations | | electrostatic fields | | magnetostatic fields | | Charged particle motion | | Particle acceleration | | Electromagnetic waves | | Bremsstrahlung | | Compton scattering | | PhotoionizationLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata