Searching for fabric : 437 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

4.510 Digital Design Fabrication (MIT) 4.510 Digital Design Fabrication (MIT)

Description

This class serves as an introductory subject in advanced computing, rapid prototyping, and CAD/CAM fabrication for architects. It focuses on the relationship between design and various forms of computer modeling as input, and CAD/CAM tools as output material. It presents the process of design and construction using CAD files introduced by the office of Gehry Partners during the construction of the Guggenheim Museum in Bilbao, Spain. It is taught in phases starting with rapid prototyping and ending with digital mockups of building components fabricated from CAD files on a one-to-one scale. This class serves as an introductory subject in advanced computing, rapid prototyping, and CAD/CAM fabrication for architects. It focuses on the relationship between design and various forms of computer modeling as input, and CAD/CAM tools as output material. It presents the process of design and construction using CAD files introduced by the office of Gehry Partners during the construction of the Guggenheim Museum in Bilbao, Spain. It is taught in phases starting with rapid prototyping and ending with digital mockups of building components fabricated from CAD files on a one-to-one scale.

Subjects

architectural design and computation | architectural design and computation | computer modeling | computer modeling | rendering | rendering | digital fabrication | digital fabrication | exploration of space | exploration of space | place making | place making | computer rendering | computer rendering | design construction | design construction | CAD/CAM fabrication | CAD/CAM fabrication | computer models | computer models | computer aided drawings | computer aided drawings | rapid prototyped models | rapid prototyped models | architecture | architecture | design | design | computation | computation | CAD CAM fabrication | CAD CAM fabrication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Microelectronics Processing Technology (MIT) 6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology. This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | microelectronics | Microelectronics processing | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | integrated circuits | vacuum | vacuum | chemical vapor deposition | chemical vapor deposition | CVD | CVD | oxidation | oxidation | diffusion | diffusion | implantation | implantation | lithography | lithography | soft lithography | soft lithography | etching | etching | sputtering | sputtering | evaporation | evaporation | interconnect | interconnect | metallization | metallization | crystal growth | crystal growth | reliability | reliability | fabrication | fabrication | processing | processing | photolithography | photolithography | physical vapor deposition | physical vapor deposition | MOS | MOS | MOS capacitor | MOS capacitor | microcantilever | microcantilever | microfluidic | microfluidic | 6.152 | 6.152 | 3.155 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.510 Digital Design Fabrication (MIT) 4.510 Digital Design Fabrication (MIT)

Description

This course will guide graduate students through the process of using rapid prototyping and CAD/CAM devices in a studio environment. The class has a theoretical focus on machine use within the process of design. Each student is expected to have completed one graduate level of design computing with a full understanding of solid modeling in CAD. Students are also expected to have completed at least one graduate design studio. This course will guide graduate students through the process of using rapid prototyping and CAD/CAM devices in a studio environment. The class has a theoretical focus on machine use within the process of design. Each student is expected to have completed one graduate level of design computing with a full understanding of solid modeling in CAD. Students are also expected to have completed at least one graduate design studio.

Subjects

digital fabrication | digital fabrication | design | design | cad | cad | cam | cam | digital manufacturing | digital manufacturing | assembly | assembly | design geometry | design geometry | fabrication | fabrication | drafting | drafting | modeling | modeling | printing | printing | waterjet cutting | waterjet cutting | cnc manufacturing | cnc manufacturing | generative fabrication | generative fabrication | construction grammars | construction grammars | prototyping | prototyping | boston water taxi | boston water taxi

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Manoeuvring prefabricated sections at Readhead's shipyard Manoeuvring prefabricated sections at Readhead's shipyard

Description

Subjects

roof | roof | sky | sky | cloud | cloud | abstract | abstract | blur | blur | building | building | industry | industry | water | water | wall | wall | stairs | stairs | daylight | daylight | interesting | interesting | workers | workers | construction | construction | stair | stair | industrial | industrial | ship | ship | angle | angle | hole | hole | crane | crane | timber | timber | mark | mark | debris | debris | grain | grain | shapes | shapes | structures | structures | machine | machine | bank | bank | ground | ground | vessel | vessel | structure | structure | hose | hose | cranes | cranes | chain | chain | maritime | maritime | land | land | vegetation | vegetation | precision | precision | opening | opening | ladder | ladder | unusual | unusual | hook | hook | shipyard | shipyard | shipping | shipping | southshields | southshields | tyneside | tyneside | development | development | partnership | partnership | impressive | impressive | fascinating | fascinating | digitalimage | digitalimage | blackandwhitephotography | blackandwhitephotography | 1865 | 1865 | bulkcarrier | bulkcarrier | rivertyne | rivertyne | shipbuilding | shipbuilding | industrialheritage | industrialheritage | southtyneside | southtyneside | northeastengland | northeastengland | manoeuvring | manoeuvring | prefabricated | prefabricated | blackandwhitephotograph | blackandwhitephotograph | lawe | lawe | maritimeheritage | maritimeheritage | prefabrication | prefabrication | november1964 | november1964 | prefabricatedsections | prefabricatedsections | johnreadhead | johnreadhead | shellplating | shellplating | doublebottoms | doublebottoms | johnreadheadsonsltd | johnreadheadsonsltd | hudsonlight | hudsonlight | johnreadheadsonssouthshields | johnreadheadsonssouthshields | jsoftley | jsoftley | readheadsshipyard | readheadsshipyard

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.173 Digital Mock-Up Workshop (MIT) 4.173 Digital Mock-Up Workshop (MIT)

Description

This is an advanced subject in computer modeling and CAD CAM fabrication in building large-scale prototypes and digital mock-ups within a studio setting. Prototypes and mock-ups are developed with the aid of outside designers, consultants and fabricators. Field trips and in depth relationships with building fabricators demonstrate new methods for building design. The class analyzes complex shapes, shape relationships and curved surfaces fabrication at a macro scale leading to new architectural languages based on new methods of design and construction. This is an advanced subject in computer modeling and CAD CAM fabrication in building large-scale prototypes and digital mock-ups within a studio setting. Prototypes and mock-ups are developed with the aid of outside designers, consultants and fabricators. Field trips and in depth relationships with building fabricators demonstrate new methods for building design. The class analyzes complex shapes, shape relationships and curved surfaces fabrication at a macro scale leading to new architectural languages based on new methods of design and construction.

Subjects

architecture | architecture | digital fabrication | digital fabrication | CAD / CAM | CAD / CAM | machining | machining | computer aided design | computer aided design | digital prototype | digital prototype | fabrication | fabrication | Gehry | Gehry | TriPyramid | TriPyramid | Stata Center | Stata Center | Disney Concert Hall | Disney Concert Hall | digital architecture | digital architecture | 3D modelling | 3D modelling | 3D printing | 3D printing | Palladio | Palladio | design and manufacture | design and manufacture | construction | construction | assembly | assembly | tectonics | tectonics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.500 Introduction to Design Computing (MIT) 4.500 Introduction to Design Computing (MIT)

Description

This course introduces students to architectural design and computation through the use of computer modeling, rendering, and digital fabrication. The focus is on the exploration of space and place-making through the use of computer rendering and design construction and fabrication. Students design a small building using computer models leading to a full package of physical and virtual materials, from computer generated drawings to rapid, prototyped models. This course introduces students to architectural design and computation through the use of computer modeling, rendering, and digital fabrication. The focus is on the exploration of space and place-making through the use of computer rendering and design construction and fabrication. Students design a small building using computer models leading to a full package of physical and virtual materials, from computer generated drawings to rapid, prototyped models.

Subjects

architectural design and computation | architectural design and computation | computer modeling | computer modeling | rendering | rendering | digital fabrication | digital fabrication | exploration of space | exploration of space | place making | place making | computer rendering | computer rendering | design construction | design construction | CAD CAM fabrication | CAD CAM fabrication | computer models | computer models | computer aided drawings | computer aided drawings | rapid prototyped models | rapid prototyped models | architecture | architecture | design | design | computation | computation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.206 Introduction to Design Computing (MIT) 4.206 Introduction to Design Computing (MIT)

Description

This course will introduce students to architectural design and computation through the use of computer modeling, rendering and digital fabrication. The course focuses on teaching architectural design with CAD drawing, modeling, rendering and rapid prototyping. Students will be required to build computer models that will lead to a full package of architectural explorations within a computational environment. Each semester will explore a particular historical period in architecture and the work of a selected architect. This course will introduce students to architectural design and computation through the use of computer modeling, rendering and digital fabrication. The course focuses on teaching architectural design with CAD drawing, modeling, rendering and rapid prototyping. Students will be required to build computer models that will lead to a full package of architectural explorations within a computational environment. Each semester will explore a particular historical period in architecture and the work of a selected architect.

Subjects

architectural design and computation | architectural design and computation | computer modeling | computer modeling | rendering | rendering | digital fabrication | digital fabrication | exploration of space | exploration of space | place making | place making | computer rendering | computer rendering | design construction | design construction | CAD CAM fabrication | CAD CAM fabrication | computer models | computer models | computer aided drawings | computer aided drawings | rapid prototyped models | rapid prototyped models | architecture | architecture | design | design | computation | computation | representational mediums | representational mediums | architectural design | architectural design | complex phenomena | complex phenomena | constructs | constructs | information visualization | information visualization | programming | programming | computer graphics | computer graphics | data respresentation | data respresentation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.212 Design Fabrication (MIT) 4.212 Design Fabrication (MIT)

Description

Design Fabrication is an introductory course in the field of advanced computing, prototyping and building fabrication. The class is focused on the relationship between design, various forms of computer modeling both explicit and generative and the physical representation of information using rapid prototyping devices. Design Fabrication is an introductory course in the field of advanced computing, prototyping and building fabrication. The class is focused on the relationship between design, various forms of computer modeling both explicit and generative and the physical representation of information using rapid prototyping devices.

Subjects

architectural design and computation | architectural design and computation | computer modeling | computer modeling | rendering | rendering | digital fabrication | digital fabrication | exploration of space | exploration of space | place making | place making | computer rendering | computer rendering | design construction | design construction | CAD CAM fabrication | CAD CAM fabrication | computer models | computer models | computer aided drawings | computer aided drawings | rapid prototyped models | rapid prototyped models | architecture | architecture | design | design | computation | computation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.511 Digital Mock-Up Workshop (MIT) 4.511 Digital Mock-Up Workshop (MIT)

Description

This is an advanced subject in computer modeling and CAD CAM fabrication, with a focus on building large-scale prototypes and digital mock-ups within a classroom setting. Prototypes and mock-ups are developed with the aid of outside designers, consultants, and fabricators. Field trips and in-depth relationships with building fabricators demonstrate new methods for building design. The class analyzes complex shapes, shape relationships, and curved surfaces fabrication at a macro scale leading to new architectural languages, based on methods of construction. This is an advanced subject in computer modeling and CAD CAM fabrication, with a focus on building large-scale prototypes and digital mock-ups within a classroom setting. Prototypes and mock-ups are developed with the aid of outside designers, consultants, and fabricators. Field trips and in-depth relationships with building fabricators demonstrate new methods for building design. The class analyzes complex shapes, shape relationships, and curved surfaces fabrication at a macro scale leading to new architectural languages, based on methods of construction.

Subjects

architecture | architecture | digital fabrication | digital fabrication | CAD / CAM | CAD / CAM | machining | machining | computer aided design | computer aided design | digital prototype | digital prototype | fabrication | fabrication | Gehry | Gehry | TriPyramid | TriPyramid | Stata Center | Stata Center | Disney Concert Hall | Disney Concert Hall | digital architecture | digital architecture | 3D modelling | 3D modelling | 3D printing | 3D printing | Palladio | Palladio | design and manufacture | design and manufacture | construction | construction | assembly | assembly | tectonics | tectonics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.501 Architectural Construction and Computation (MIT) 4.501 Architectural Construction and Computation (MIT)

Description

This class investigates the use of computers in architectural design and construction. It begins with a pre-prepared design computer model, which is used for testing and process investigation in construction. It then explores the process of construction from all sides of the practice: detail design, structural design, and both legal and computational issues. This class investigates the use of computers in architectural design and construction. It begins with a pre-prepared design computer model, which is used for testing and process investigation in construction. It then explores the process of construction from all sides of the practice: detail design, structural design, and both legal and computational issues.

Subjects

architecture | architecture | digital fabrication | digital fabrication | CAD / CAM | CAD / CAM | machining | machining | computer aided design | computer aided design | digital prototype | digital prototype | fabrication | fabrication | Gehry | Gehry | TriPyramid | TriPyramid | Stata Center | Stata Center | Disney Concert Hall | Disney Concert Hall | digital architecture | digital architecture | 3D modelling | 3D modelling | 3D printing | 3D printing | Palladio | Palladio | design and manufacture | design and manufacture | construction | construction | assembly | assembly | tectonics | tectonics | building | building | building materials | building materials | joints | joints | connections | connections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.774 Physics of Microfabrication: Front End Processing (MIT) 6.774 Physics of Microfabrication: Front End Processing (MIT)

Description

Includes audio/video content: AV lectures. This course is offered to graduates and focuses on understanding the fundamental principles of the "front-end" processes used in the fabrication of devices for silicon integrated circuits. This includes advanced physical models and practical aspects of major processes, such as oxidation, diffusion, ion implantation, and epitaxy. Other topics covered include: high performance MOS and bipolar devices including ultra-thin gate oxides, implant-damage enhanced diffusion, advanced metrology, and new materials such as Silicon Germanium (SiGe). Includes audio/video content: AV lectures. This course is offered to graduates and focuses on understanding the fundamental principles of the "front-end" processes used in the fabrication of devices for silicon integrated circuits. This includes advanced physical models and practical aspects of major processes, such as oxidation, diffusion, ion implantation, and epitaxy. Other topics covered include: high performance MOS and bipolar devices including ultra-thin gate oxides, implant-damage enhanced diffusion, advanced metrology, and new materials such as Silicon Germanium (SiGe).

Subjects

fabrication processes | fabrication processes | silicon | silicon | integrated circuits | integrated circuits | monolithic integrated circuits | monolithic integrated circuits | physical models | physical models | bulk crystal growth | bulk crystal growth | thermal oxidation | thermal oxidation | solid-state diffusion | solid-state diffusion | ion implantation | ion implantation | epitaxial deposition | epitaxial deposition | chemical vapor deposition | chemical vapor deposition | physical vapor deposition | physical vapor deposition | refractory metal silicides | refractory metal silicides | plasma and reactive ion etching | plasma and reactive ion etching | rapid thermal processing | rapid thermal processing | process modeling | process modeling | process simulation | process simulation | technological limitations | technological limitations | integrated circuit design | integrated circuit design | integrated circuit fabrication | integrated circuit fabrication | device operation | device operation | sige materials | sige materials | processing | processing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.042 Materials Project Laboratory (MIT) 3.042 Materials Project Laboratory (MIT)

Description

As its name implies, the 3.042 Materials Project Laboratory involves working with such operations as investment casting of metals, injection molding of polymers, and sintering of ceramics. After all the abstraction and theory in the lecture part of the DMSE curriculum, many students have found this hands-on experience with materials to be very fun stuff - several have said that 3.042/3.082 was their favorite DMSE subject. The lab is more than operating processing equipment, however. It is intended also to emulate professional practice in materials engineering project management, with aspects of design, analysis, teamwork, literature and patent searching, Web creation and oral presentation, and more. As its name implies, the 3.042 Materials Project Laboratory involves working with such operations as investment casting of metals, injection molding of polymers, and sintering of ceramics. After all the abstraction and theory in the lecture part of the DMSE curriculum, many students have found this hands-on experience with materials to be very fun stuff - several have said that 3.042/3.082 was their favorite DMSE subject. The lab is more than operating processing equipment, however. It is intended also to emulate professional practice in materials engineering project management, with aspects of design, analysis, teamwork, literature and patent searching, Web creation and oral presentation, and more.

Subjects

Student project teams design and fabricate a materials engineering prototype using processing technologies (injection molding | Student project teams design and fabricate a materials engineering prototype using processing technologies (injection molding | thermoforming | thermoforming | investment casting | investment casting | powder processing | powder processing | three-dimensional printing | three-dimensional printing | physical vapor deposition | physical vapor deposition | etc.) appropriate for the materials and device of interest. Goals include using MSE fundamentals in a practical application; understanding trade-offs between design | etc.) appropriate for the materials and device of interest. Goals include using MSE fundamentals in a practical application; understanding trade-offs between design | processing and performance; and fabrication of a deliverable prototype. Emphasis on teamwork | processing and performance; and fabrication of a deliverable prototype. Emphasis on teamwork | project management | project management | communications and computer skills | communications and computer skills | and hands-on work using student and MIT laboratory shops. Teams document their progress and final results by means of web pages and weekly oral presentations. Instruction and practice in oral communication provided. | and hands-on work using student and MIT laboratory shops. Teams document their progress and final results by means of web pages and weekly oral presentations. Instruction and practice in oral communication provided.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.91 Mechanical Behavior of Plastics (MIT) 3.91 Mechanical Behavior of Plastics (MIT)

Description

This course is aimed at presenting the concepts underlying the response of polymeric materials to applied loads. These will include both the molecular mechanisms involved and the mathematical description of the relevant continuum mechanics. It is dominantly an "engineering" subject, but with an atomistic flavor. It covers the influence of processing and structure on mechanical properties of synthetic and natural polymers: Hookean and entropic elastic deformation, linear viscoelasticity, composite materials and laminates, yield and fracture. This course is aimed at presenting the concepts underlying the response of polymeric materials to applied loads. These will include both the molecular mechanisms involved and the mathematical description of the relevant continuum mechanics. It is dominantly an "engineering" subject, but with an atomistic flavor. It covers the influence of processing and structure on mechanical properties of synthetic and natural polymers: Hookean and entropic elastic deformation, linear viscoelasticity, composite materials and laminates, yield and fracture.

Subjects

plastics; synthetic high polymers; viscoelastic phenomena; viscoelastic and strength properties; mechanical property evaluation; plastics fabrication methods | plastics; synthetic high polymers; viscoelastic phenomena; viscoelastic and strength properties; mechanical property evaluation; plastics fabrication methods | plastics | plastics | synthetic high polymers | synthetic high polymers | viscoelastic phenomena | viscoelastic phenomena | viscoelastic and strength properties | viscoelastic and strength properties | mechanical property evaluation | mechanical property evaluation | plastics fabrication methods | plastics fabrication methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.777J Design and Fabrication of Microelectromechanical Devices (MIT) 6.777J Design and Fabrication of Microelectromechanical Devices (MIT)

Description

6.777J / 2.372J is an introduction to microsystem design. Topics covered include: material properties, microfabrication technologies, structural behavior, sensing methods, fluid flow, microscale transport, noise, and amplifiers feedback systems. Student teams design microsystems (sensors, actuators, and sensing/control systems) of a variety of types, (e.g., optical MEMS, bioMEMS, inertial sensors) to meet a set of performance specifications (e.g., sensitivity, signal-to-noise) using a realistic microfabrication process. There is an emphasis on modeling and simulation in the design process. Prior fabrication experience is desirable. The course is worth 4 Engineering Design Points. 6.777J / 2.372J is an introduction to microsystem design. Topics covered include: material properties, microfabrication technologies, structural behavior, sensing methods, fluid flow, microscale transport, noise, and amplifiers feedback systems. Student teams design microsystems (sensors, actuators, and sensing/control systems) of a variety of types, (e.g., optical MEMS, bioMEMS, inertial sensors) to meet a set of performance specifications (e.g., sensitivity, signal-to-noise) using a realistic microfabrication process. There is an emphasis on modeling and simulation in the design process. Prior fabrication experience is desirable. The course is worth 4 Engineering Design Points.

Subjects

microsystem design | microsystem design | material properties | material properties | microfabrication technologies | microfabrication technologies | structural behavior | structural behavior | sensing methods | sensing methods | fluid flow | fluid flow | microscale transport | microscale transport | noise | noise | amplifiers feedback systems | amplifiers feedback systems | sensors | sensors | actuators | actuators | sensing/control systems | sensing/control systems | optical MEMS | optical MEMS | bioMEMS | bioMEMS | inertial sensors | inertial sensors | sensitivity | sensitivity | signal-to-noise | signal-to-noise | realistic microfabrication process | realistic microfabrication process

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

MAS.863 How to Make (Almost) Anything (MIT) MAS.863 How to Make (Almost) Anything (MIT)

Description

This course provides a hands-on introduction to the resources for designing and fabricating smart systems, including CAD/CAM/CAE; NC machining, 3-D printing, injection molding, laser cutting; PCB layout and fabrication; sensors and actuators; analog instrumentation; embedded digital processing; wired and wireless communications. This course also puts emphasis on learning how to use the tools as well as understand how they work. This course provides a hands-on introduction to the resources for designing and fabricating smart systems, including CAD/CAM/CAE; NC machining, 3-D printing, injection molding, laser cutting; PCB layout and fabrication; sensors and actuators; analog instrumentation; embedded digital processing; wired and wireless communications. This course also puts emphasis on learning how to use the tools as well as understand how they work.

Subjects

tutorials | tutorials | hands-on | hands-on | resources for designing and fabricating smart systems | resources for designing and fabricating smart systems | smart systems | smart systems | design | design | tutorial | tutorial | fabrication | fabrication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Manoeuvring prefabricated sections at Readhead's shipyard

Description

View of prefabricated double bottoms being lowered into place on the shell plating of the bulk carrier ?Hudson Light? at the shipyard of John Readhead & Sons Ltd, South Shield, November 1964 (TWAM ref. DT.TUR/2/34872C). This set celebrates the achievements of the shipyard of John Readhead & Sons. The firm has played a significant role in the North East?s illustrious shipbuilding history and the development of South Shields. The company began in 1865 when John Readhead, a shipyard manager, entered into business with J Softley at a small yard on the Lawe at South Shields. Following the dissolution of the partnership in 1872, it continued as John Readhead & Co on the same site until 1880 when the High West Yard was purchased. After Readhead?s four sons were taken into the business in 1888 the company traded as John Readhead & Sons becoming a limited company in 1908. In 1968 the company was absorbed by the Swan Hunter Group and in 1977 became part of the nationalised British Shipbuilders. In the same year the last vessel was launched and the site was sold off in 1984. Readheads was prolific and built over 600 ships from 1865 to 1968, including 87 vessels for the Hain Steamship Company Ltd and over forty for the Strick Line Ltd. The shipyard also built four ships for the Prince Line, founded by Sir James Knott. The firm built vessels, which were involved in the major conflicts of the Twentieth Century. During the First World War they built patrol vessels and ?x? lighters (motor landing craft used in the Gallipoli campaign) for the Admiralty. During the Second World War the firm built tankers for the Normandy Landings. (Copyright) We're happy for you to share this digital image within the spirit of The Commons. Please cite 'Tyne & Wear Archives & Museums' when reusing. Certain restrictions on high quality reproductions and commercial use of the original physical version apply though; if you're unsure please email archives@twmuseums.org.uk.

Subjects

southshields | shipbuilding | johnreadheadsonsltd | shipyard | cranes | hudsonlight | construction | bulkcarrier | industry | industrial | shipping | maritime | southtyneside | prefabricated | prefabrication | doublebottoms | rivertyne | tyneside | northeastengland | workers | blackandwhitephotography | precision | angle | shapes | industrialheritage | maritimeheritage | abstract | johnreadheadsonssouthshields | crane | chain | building | stairs | wall | roof | stair | prefabricatedsections | manoeuvring | readheadsshipyard | bank | shellplating | vessel | ship | structure | structures | november1964 | development | 1865 | partnership | johnreadhead | jsoftley | lawe | fascinating | interesting | unusual | impressive | blackandwhitephotograph | digitalimage | sky | cloud | daylight | machine | ladder | timber | water | blur | grain | land | vegetation | hose | mark | hook | opening | hole | debris | ground

License

No known copyright restrictions

Site sourced from

Tyne & Wear Archives & Museums | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.510 Digital Design Fabrication (MIT)

Description

This class serves as an introductory subject in advanced computing, rapid prototyping, and CAD/CAM fabrication for architects. It focuses on the relationship between design and various forms of computer modeling as input, and CAD/CAM tools as output material. It presents the process of design and construction using CAD files introduced by the office of Gehry Partners during the construction of the Guggenheim Museum in Bilbao, Spain. It is taught in phases starting with rapid prototyping and ending with digital mockups of building components fabricated from CAD files on a one-to-one scale.

Subjects

architectural design and computation | computer modeling | rendering | digital fabrication | exploration of space | place making | computer rendering | design construction | CAD/CAM fabrication | computer models | computer aided drawings | rapid prototyped models | architecture | design | computation | CAD CAM fabrication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | 6.152 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.510 Digital Design Fabrication (MIT)

Description

This course will guide graduate students through the process of using rapid prototyping and CAD/CAM devices in a studio environment. The class has a theoretical focus on machine use within the process of design. Each student is expected to have completed one graduate level of design computing with a full understanding of solid modeling in CAD. Students are also expected to have completed at least one graduate design studio.

Subjects

digital fabrication | design | cad | cam | digital manufacturing | assembly | design geometry | fabrication | drafting | modeling | printing | waterjet cutting | cnc manufacturing | generative fabrication | construction grammars | prototyping | boston water taxi

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.166 Law, Social Movements, and Public Policy: Comparative and International Experience (MIT) 11.166 Law, Social Movements, and Public Policy: Comparative and International Experience (MIT)

Description

The course introduces theoretical frameworks from legal and social movement theories as applied to court opinions, legislation, treaties, law-related articles, and policy-oriented materials and focuses on the impact of the relationship between courts and grassroots activism on current issues like trade, environmental regulation, and human rights enforcement. Students examine case studies of institutional processes including the World Trade Organization and the World Bank from key countries like the US and India. The course introduces theoretical frameworks from legal and social movement theories as applied to court opinions, legislation, treaties, law-related articles, and policy-oriented materials and focuses on the impact of the relationship between courts and grassroots activism on current issues like trade, environmental regulation, and human rights enforcement. Students examine case studies of institutional processes including the World Trade Organization and the World Bank from key countries like the US and India.

Subjects

cities | cities | developers | developers | real estate | real estate | technology | technology | digital | digital | design | design | urban renewal | urban renewal | value creation | value creation | livability | livability | social capital | social capital | rejuvenation | rejuvenation | brokerage | brokerage | urban planning | urban planning | physical fabric | physical fabric | partnerships | partnerships

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.72 Elements of Mechanical Design (MIT) 2.72 Elements of Mechanical Design (MIT)

Description

This course provides an advanced treatment of machine elements such as bearings, springs, gears, cams, and mechanisms. Analysis of these elements includes extensive application of core engineering curriculum including solid mechanics and fluid dynamics. The course offers practice in skills needed for machine design such as estimation, drawing, and experimentation. Students work in small teams to design and build machines that address real-world challenges. This course provides an advanced treatment of machine elements such as bearings, springs, gears, cams, and mechanisms. Analysis of these elements includes extensive application of core engineering curriculum including solid mechanics and fluid dynamics. The course offers practice in skills needed for machine design such as estimation, drawing, and experimentation. Students work in small teams to design and build machines that address real-world challenges.

Subjects

machine design | machine design | hardware | hardware | project | project | machine element | machine element | design process | design process | design layout | design layout | prototype | prototype | mechanism | mechanism | engineering | engineering | fabrication | fabrication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.91J Mechanical Behavior of Plastics (MIT) 3.91J Mechanical Behavior of Plastics (MIT)

Description

Relation among chemical composition, physical structure, and mechanical behavior of plastics or synthetic high polymers. Study of types of polymers; fundamentals of viscoelastic phenomena such as creep, stress relaxation, stress rupture, mechanical damping, impact; effects of chemical composition and structure on viscoelastic and strength properties; methods of mechanical property evaluation. Influences of plastics fabrication methods. Emphasis on recent research techniques and results. Individual laboratory projects investigating problems related to current research. Relation among chemical composition, physical structure, and mechanical behavior of plastics or synthetic high polymers. Study of types of polymers; fundamentals of viscoelastic phenomena such as creep, stress relaxation, stress rupture, mechanical damping, impact; effects of chemical composition and structure on viscoelastic and strength properties; methods of mechanical property evaluation. Influences of plastics fabrication methods. Emphasis on recent research techniques and results. Individual laboratory projects investigating problems related to current research.

Subjects

plastics | | plastics | | synthetic high polymers | | synthetic high polymers | | viscoelastic phenomena | | viscoelastic phenomena | | viscoelastic and strength properties | | viscoelastic and strength properties | | mechanical property evaluation | | mechanical property evaluation | | plastics fabrication methods | plastics fabrication methods | plastics | plastics | synthetic high polymers | synthetic high polymers | viscoelastic phenomena | viscoelastic phenomena | viscoelastic and strength properties | viscoelastic and strength properties | mechanical property evaluation | mechanical property evaluation | 3.91 | 3.91 | 1.593 | 1.593

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.351 Systems Analysis of the Nuclear Fuel Cycle (MIT) 22.351 Systems Analysis of the Nuclear Fuel Cycle (MIT)

Description

In-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing and waste disposal. Principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors are presented. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers. In-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing and waste disposal. Principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors are presented. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers.

Subjects

nuclear fuel cycle | nuclear fuel cycle | uranium supply | uranium supply | enrichment fuel fabrication | enrichment fuel fabrication | in-core physics | in-core physics | fuel cycle economics | fuel cycle economics | applied reactor physics | applied reactor physics | Nonproliferation aspects | Nonproliferation aspects | disposal of excess weapons plutonium | disposal of excess weapons plutonium | transmutation of actinides | transmutation of actinides | fission products | fission products | spent fuel | spent fuel

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

11.328J Urban Design Skills: Observing, Interpreting, and Representing the City (MIT) 11.328J Urban Design Skills: Observing, Interpreting, and Representing the City (MIT)

Description

This is an introduction course to the methods of recording, evaluating, and communicating about the urban environment. The course will build skills fundamental to undertaking a wide variety of urban design efforts, including for example: design of streets and public places, shaping neighborhood form and function, and incorporating natural systems into the urban fabric.Through visual observation, field analysis, measurements, interviews, and other means, students will learn to draw on their senses and develop their ability to deduce, question, and test conclusions about how the environment is used and valued. Through the use of representation tools such as: drawing, photographing, computer modeling and desktop publishing, students will communicate what is observed as well as their impressio This is an introduction course to the methods of recording, evaluating, and communicating about the urban environment. The course will build skills fundamental to undertaking a wide variety of urban design efforts, including for example: design of streets and public places, shaping neighborhood form and function, and incorporating natural systems into the urban fabric.Through visual observation, field analysis, measurements, interviews, and other means, students will learn to draw on their senses and develop their ability to deduce, question, and test conclusions about how the environment is used and valued. Through the use of representation tools such as: drawing, photographing, computer modeling and desktop publishing, students will communicate what is observed as well as their impressio

Subjects

urban environment | urban environment | design | design | streets | streets | public places | public places | shaping neighborhood form and function | shaping neighborhood form and function | natural systems | natural systems | urban fabric | urban fabric | urban planning | urban planning | city planning | city planning | urban studio | urban studio | recording | recording | visual presentation | visual presentation | surveys | surveys | 11.328 | 11.328 | 4.240 | 4.240

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.500 Introduction to Design Computing (MIT) 4.500 Introduction to Design Computing (MIT)

Description

This course will introduce students to architectural design and computation through the use of computer modeling, rendering and digital fabrication. The course focuses on teaching architectural design with CAD drawing, 3-D modeling, rendering and rapid prototyping. Students will be required to build computer models that will lead to a full package of architectural explorations with computers. Each semester we will explore the design process of a particular building type and building material. The course also investigates a few design processes of selected architects. The course is critical of design principles and building production methods. Student assignments are graded based on the quality of design, representation and constructability. Great design input is always encouraged. This course will introduce students to architectural design and computation through the use of computer modeling, rendering and digital fabrication. The course focuses on teaching architectural design with CAD drawing, 3-D modeling, rendering and rapid prototyping. Students will be required to build computer models that will lead to a full package of architectural explorations with computers. Each semester we will explore the design process of a particular building type and building material. The course also investigates a few design processes of selected architects. The course is critical of design principles and building production methods. Student assignments are graded based on the quality of design, representation and constructability. Great design input is always encouraged.

Subjects

architectural design and computation | architectural design and computation | computer modeling | computer modeling | rendering | rendering | digital fabrication | digital fabrication | exploration of space | exploration of space | place | place

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata