Searching for frequency response : 11 results found | RSS Feed for this search

16.31 Feedback Control Systems (MIT) 16.31 Feedback Control Systems (MIT)

Description

This course covers the fundamentals of control design and analysis using state-space methods. This includes both the practical and theoretical aspects of the topic. By the end of the course, the student should be able to design controllers using state-space methods and evaluate whether these controllers are robust. This course covers the fundamentals of control design and analysis using state-space methods. This includes both the practical and theoretical aspects of the topic. By the end of the course, the student should be able to design controllers using state-space methods and evaluate whether these controllers are robust.Subjects

linear system response | linear system response | aircraft control | aircraft control | frequency response methods | frequency response methods | Nyquist stability theorem | Nyquist stability theorem | bode plots | bode plots | state-space systems | state-space systems | full-state feedback control | full-state feedback control | open-loop estimators | open-loop estimators | closed-loop estimators | closed-loop estimators | robustness analysis | robustness analysis | small gain theorem | small gain theoremLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. 6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points.Subjects

circuit | circuit | electronic | electronic | abstraction | abstraction | lumped circuit | lumped circuit | digital | digital | amplifier | amplifier | differential equations | differential equations | time behavior | time behavior | energy storage | energy storage | semiconductor diode | semiconductor diode | field-effect | field-effect | field-effect transistor | field-effect transistor | resistor | resistor | source | source | inductor | inductor | capacitor | capacitor | diode | diode | series-parallel reduction | series-parallel reduction | voltage | voltage | current divider | current divider | node method | node method | linearity | linearity | superposition | superposition | Thevenin-Norton equivalent | Thevenin-Norton equivalent | power flow | power flow | Boolean algebra | Boolean algebra | binary signal | binary signal | MOSFET | MOSFET | noise margin | noise margin | singularity functions | singularity functions | sinusoidal-steady-state | sinusoidal-steady-state | impedance | impedance | frequency response curves | frequency response curves | operational amplifier | operational amplifier | Op-Amp | Op-Amp | negative feedback | negative feedback | positive feedback | positive feedbackLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course covers the design, construction, and testing of field robotic systems, through team projects with each student responsible for a specific subsystem. Projects focus on electronics, instrumentation, and machine elements. Design for operation in uncertain conditions is a focus point, with ocean waves and marine structures as a central theme. Topics include basic statistics, linear systems, Fourier transforms, random processes, spectra, ethics in engineering practice, and extreme events with applications in design. This course covers the design, construction, and testing of field robotic systems, through team projects with each student responsible for a specific subsystem. Projects focus on electronics, instrumentation, and machine elements. Design for operation in uncertain conditions is a focus point, with ocean waves and marine structures as a central theme. Topics include basic statistics, linear systems, Fourier transforms, random processes, spectra, ethics in engineering practice, and extreme events with applications in design.Subjects

optimization | optimization | random environment | random environment | linear time invariant systems | linear time invariant systems | navigation systems | navigation systems | engineering ethics | engineering ethics | spectra | spectra | probability of failure | probability of failure | frequency response | frequency response | Fourier transform | Fourier transform | convolution | convolution | extreme events | extreme events | feedback control | feedback control | statistics | statistics | machine elements | machine elementsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course provides a solid theoretical foundation for the analysis and processing of experimental data, and real-time experimental control methods. Topics covered include spectral analysis, filter design, system identification, and simulation in continuous and discrete-time domains. The emphasis is on practical problems with laboratory exercises. This course provides a solid theoretical foundation for the analysis and processing of experimental data, and real-time experimental control methods. Topics covered include spectral analysis, filter design, system identification, and simulation in continuous and discrete-time domains. The emphasis is on practical problems with laboratory exercises.Subjects

analysis and processing of experimental data; real-time experimental control methods; spectral analysis; filter design; system identification; simulation in continuous and discrete-time domains; MATLAB | analysis and processing of experimental data; real-time experimental control methods; spectral analysis; filter design; system identification; simulation in continuous and discrete-time domains; MATLAB | fast Fourier transform | fast Fourier transform | correlation function | correlation function | sampling | sampling | op-amps | op-amps | Chebyshev | Chebyshev | Laplace transform | Laplace transform | Butterworth | Butterworth | convolution | convolution | frequency response | frequency response | windowing | windowing | low-pass | low-pass | poles | poles | zeros | zerosLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This class teaches the fundamentals of signals and information theory with emphasis on modeling audio/visual messages and physiologically derived signals, and the human source or recipient. Topics include linear systems, difference equations, Z-transforms, sampling and sampling rate conversion, convolution, filtering, modulation, Fourier analysis, entropy, noise, and Shannon's fundamental theorems. Additional topics may include data compression, filter design, and feature detection. The undergraduate subject MAS.160 meets with the two half-semester graduate subjects MAS.510 and MAS.511, but assignments differ. This class teaches the fundamentals of signals and information theory with emphasis on modeling audio/visual messages and physiologically derived signals, and the human source or recipient. Topics include linear systems, difference equations, Z-transforms, sampling and sampling rate conversion, convolution, filtering, modulation, Fourier analysis, entropy, noise, and Shannon's fundamental theorems. Additional topics may include data compression, filter design, and feature detection. The undergraduate subject MAS.160 meets with the two half-semester graduate subjects MAS.510 and MAS.511, but assignments differ.Subjects

audio | audio | visual | visual | video | video | A/V | A/V | digital media | digital media | digital audio | digital audio | digital video | digital video | photography | photography | digitial photography | digitial photography | spectrum | spectrum | Spectrum plot | Spectrum plot | amplitude modulation | amplitude modulation | AM | AM | Fourier series | Fourier series | frequency modulation | frequency modulation | FM | FM | orthogonality | orthogonality | Walsh functions | Walsh functions | basis sets. Sampling theorem | basis sets. Sampling theorem | aliasing | aliasing | reconstruction | reconstruction | FFT | FFT | DFT | DFT | DTFT | DTFT | z-transform | z-transform | IIR | IIR | frequency response | frequency response | filter | filter | filter response | filter response | impulse response | impulse response | noise | noise | communications system | communications system | communications theory | communications theory | information theory | information theory | communication channel | communication channel | coding | coding | error correction | error correction | DSP | DSP | signal processing | signal processing | digital signal processing | digital signal processingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-MAS.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataControl systems analysis for engineers

Description

This site contains links to resources for an introduction to control analysis for second year engineering undergraduate.The main focus is on block diagrams, offsets, pole computations, understanding stability/instability, root-loci, bode, nyquist, margins and an introduction to lead and lag compensation. The focus is on analysis not design which is covered in a later course. The resources here include the lecture hand outs which include embedded tutorial questions, some powerpoints for structuring lectures, some games/quizzes for lectures, a MATLAB laboratory based on significant prior practice, a FLASH lecture and then a formal laboratory test under exam conditions and a small data base of CAA developed on webct (here provided in a zip file). These were developed at the University of ShefSubjects

ukoer | block diagrams | feedback | offset | steady state errors | poles | open-loop | closed-loop | root-loci | control | performance | frequency response | gain margin | phase margin | lead compenssator | lag compensator | sisotool | signal flow graph | convolution | resonance | control analysis | classical control | creative commons | laplace | bode | nyquist | matlab | engineering undergraduate education ukoer | oer | jisc | hea | hea engineering subject centre | university of sheffield | flash lecture | sheffieldunioer | engscoer | cc-by | wales | engineering | Mathematical and Computer Sciences | Engineering | Computer science | H000 | I100 | ENGINEERING | XLicense

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.31 Feedback Control Systems (MIT)

Description

This course covers the fundamentals of control design and analysis using state-space methods. This includes both the practical and theoretical aspects of the topic. By the end of the course, the student should be able to design controllers using state-space methods and evaluate whether these controllers are robust.Subjects

linear system response | aircraft control | frequency response methods | Nyquist stability theorem | bode plots | state-space systems | full-state feedback control | open-loop estimators | closed-loop estimators | robustness analysis | small gain theoremLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.002 Circuits and Electronics (MIT)

Description

6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points.Subjects

circuit | electronic | abstraction | lumped circuit | digital | amplifier | differential equations | time behavior | energy storage | semiconductor diode | field-effect | field-effect transistor | resistor | source | inductor | capacitor | diode | series-parallel reduction | voltage | current divider | node method | linearity | superposition | Thevenin-Norton equivalent | power flow | Boolean algebra | binary signal | MOSFET | noise margin | singularity functions | sinusoidal-steady-state | impedance | frequency response curves | operational amplifier | Op-Amp | negative feedback | positive feedbackLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.017J Design of Electromechanical Robotic Systems (MIT)

Description

This course covers the design, construction, and testing of field robotic systems, through team projects with each student responsible for a specific subsystem. Projects focus on electronics, instrumentation, and machine elements. Design for operation in uncertain conditions is a focus point, with ocean waves and marine structures as a central theme. Topics include basic statistics, linear systems, Fourier transforms, random processes, spectra, ethics in engineering practice, and extreme events with applications in design.Subjects

optimization | random environment | linear time invariant systems | navigation systems | engineering ethics | spectra | probability of failure | frequency response | Fourier transform | convolution | extreme events | feedback control | statistics | machine elementsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.161 Signal Processing: Continuous and Discrete (MIT)

Description

This course provides a solid theoretical foundation for the analysis and processing of experimental data, and real-time experimental control methods. Topics covered include spectral analysis, filter design, system identification, and simulation in continuous and discrete-time domains. The emphasis is on practical problems with laboratory exercises.Subjects

analysis and processing of experimental data; real-time experimental control methods; spectral analysis; filter design; system identification; simulation in continuous and discrete-time domains; MATLAB | fast Fourier transform | correlation function | sampling | op-amps | Chebyshev | Laplace transform | Butterworth | convolution | frequency response | windowing | low-pass | poles | zerosLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataMAS.160 Signals, Systems and Information for Media Technology (MIT)

Description

This class teaches the fundamentals of signals and information theory with emphasis on modeling audio/visual messages and physiologically derived signals, and the human source or recipient. Topics include linear systems, difference equations, Z-transforms, sampling and sampling rate conversion, convolution, filtering, modulation, Fourier analysis, entropy, noise, and Shannon's fundamental theorems. Additional topics may include data compression, filter design, and feature detection. The undergraduate subject MAS.160 meets with the two half-semester graduate subjects MAS.510 and MAS.511, but assignments differ.Subjects

audio | visual | video | A/V | digital media | digital audio | digital video | photography | digitial photography | spectrum | Spectrum plot | amplitude modulation | AM | Fourier series | frequency modulation | FM | orthogonality | Walsh functions | basis sets. Sampling theorem | aliasing | reconstruction | FFT | DFT | DTFT | z-transform | IIR | frequency response | filter | filter response | impulse response | noise | communications system | communications theory | information theory | communication channel | coding | error correction | DSP | signal processing | digital signal processingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata