Searching for gravitational : 21 results found | RSS Feed for this search

1

Astrophysics (MIT) Astrophysics (MIT)

Description

Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced

Subjects

black hole | black hole | general relativity | general relativity | astrophysics | astrophysics | cosmology | cosmology | Energy and momentum in flat spacetime | Energy and momentum in flat spacetime | the metric | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | trajectories and orbits of particles and light | elementary models of the Cosmos | elementary models of the Cosmos | Global Positioning System | Global Positioning System | solar system tests of relativity | solar system tests of relativity | descending into a black hole | descending into a black hole | gravitational lensing | gravitational lensing | gravitational waves | gravitational waves | Gravity Probe B | Gravity Probe B | more advanced models of the Cosmos | more advanced models of the Cosmos | spacetime curvature | spacetime curvature | rotating centers of attraction | rotating centers of attraction | nonrotating centers of attraction | nonrotating centers of attraction | event horizon | event horizon | energy | energy | momentum | momentum | flat spacetime | flat spacetime | metric | metric | trajectories | trajectories | orbits | orbits | particles | particles | light | light | elementary | elementary | models | models | cosmos | cosmos | spacetime | spacetime | curvature | curvature | flat | flat | GPS | GPS | gravitational | gravitational | lensing | lensing | waves | waves | rotating | rotating | nonrotating | nonrotating | centers | centers | attraction | attraction | solar system | solar system | tests | tests | relativity | relativity | general | general | advanced | advanced

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT) 8.033 Relativity (MIT)

Description

Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay. Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay.

Subjects

Einstein's postulates | Einstein's postulates | consequences for simultaneity | time dilation | length contraction | clock synchronization | consequences for simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects and paradoxes | relativistic effects and paradoxes | Minkowski diagrams | Minkowski diagrams | invariants and four-vectors | invariants and four-vectors | momentum | energy and mass | momentum | energy and mass | particle collisions | particle collisions | Relativity and electricity | Relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | General Relativity | General Relativity | principle of equivalence | principle of equivalence | the Schwarzchild metric | the Schwarzchild metric | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | gravitational red shift | particle trajectories | particle trajectories | light trajectories | light trajectories | invariants | invariants | four-vectors | four-vectors | momentum | momentum | energy | energy | mass | mass | relativistic effects | relativistic effects | paradoxes | paradoxes | electricity | electricity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Schwarzchild metric | Schwarzchild metric | geodesics | geodesics | Shaprio delay | Shaprio delay | relativistic kinematics | relativistic kinematics | relativistic dynamics | relativistic dynamics | electromagnetism | electromagnetism | hubble expansion | hubble expansion | universe | universe | equivalence principle | equivalence principle | curved space time | curved space time | Ether Theory | Ether Theory | constants | constants | speed of light | speed of light | c | c | graph | graph | pythagorem theorem | pythagorem theorem | triangle | triangle | arrows | arrows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.962 General Relativity (MIT) 8.962 General Relativity (MIT)

Description

8.962 is MIT's graduate course in general relativity, which covers the basic principles of Einstein's general theory of relativity, differential geometry, experimental tests of general relativity, black holes, and cosmology. 8.962 is MIT's graduate course in general relativity, which covers the basic principles of Einstein's general theory of relativity, differential geometry, experimental tests of general relativity, black holes, and cosmology.

Subjects

Spacetime | Spacetime | tensors | tensors | special relativity | special relativity | differential geometry | differential geometry | Einstein's equation | Einstein's equation | gravitation | gravitation | cosmological constant | cosmological constant | Hilbert action | Hilbert action | general relativity | general relativity | gravitational waves | gravitational waves | gravitational lensing | gravitational lensing | cosmology | cosmology | Schwarzschild solution | Schwarzschild solution | black holes | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Astrophysics (MIT)

Description

Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced models of the Cosmos.

Subjects

black hole | general relativity | astrophysics | cosmology | Energy and momentum in flat spacetime | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | elementary models of the Cosmos | Global Positioning System | solar system tests of relativity | descending into a black hole | gravitational lensing | gravitational waves | Gravity Probe B | more advanced models of the Cosmos | spacetime curvature | rotating centers of attraction | nonrotating centers of attraction | event horizon | energy | momentum | flat spacetime | metric | trajectories | orbits | particles | light | elementary | models | cosmos | spacetime | curvature | flat | GPS | gravitational | lensing | waves | rotating | nonrotating | centers | attraction | solar system | tests | relativity | general | advanced

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.07 Dynamics (MIT) 16.07 Dynamics (MIT)

Description

Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics. Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics.

Subjects

Curvilinear motion | Curvilinear motion | carteian coordinates | carteian coordinates | dynamics | dynamics | equations of motion | equations of motion | intrinsic coordinates | intrinsic coordinates | coordinate systems | coordinate systems | work | work | energy | energy | conservative forces | conservative forces | potential energy | potential energy | linear impulse | linear impulse | mommentum | mommentum | angular impulse | angular impulse | relative motion | relative motion | rotating axes | rotating axes | translating axes | translating axes | Newton's second law | Newton's second law | inertial forces | inertial forces | accelerometers | accelerometers | Newtonian relativity | Newtonian relativity | gravitational attraction | gravitational attraction | 2D rigid body kinematics | 2D rigid body kinematics | conservation laws for systems of particles | conservation laws for systems of particles | 2D rigid body dynamics | 2D rigid body dynamics | pendulums | pendulums | 3D rigid body kinematics | 3D rigid body kinematics | 3d rigid body dynamics | 3d rigid body dynamics | inertia tensor | inertia tensor | gyroscopic motion | gyroscopic motion | torque-free motion | torque-free motion | spin stabilization | spin stabilization | variable mass systems | variable mass systems | rocket equation | rocket equation | central foce motion | central foce motion | Keppler's laws | Keppler's laws | orbits | orbits | orbit transfer | orbit transfer | vibration | vibration | spring mass systems | spring mass systems | forced vibration | forced vibration | isolation | isolation | coupled oscillators | coupled oscillators | normal modes | normal modes | wave propagation | wave propagation | cartesian coordinates | cartesian coordinates | momentum | momentum | central force motion | central force motion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT) 8.033 Relativity (MIT)

Description

This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology. This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology.

Subjects

relativity | relativity | special relativity | special relativity | Einstein's postulates | Einstein's postulates | simultaneity | simultaneity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects | relativistic effects | Minkowski diagrams | Minkowski diagrams | relativistic invariants | relativistic invariants | four-vectors | four-vectors | relativitistic particle collisions | relativitistic particle collisions | relativity and electricity | relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | general relativity | general relativity | Schwarzchild metric | Schwarzchild metric | gravitational | gravitational | red shift | red shift | light trajectories | light trajectories | geodesics | geodesics | Shapiro delay | Shapiro delay

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models. Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402 | plusars | plusars | galaxies | galaxies | normal and active galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.901 Astrophysics I (MIT) 8.901 Astrophysics I (MIT)

Description

This course provides a graduate-level introduction to stellar astrophysics. It covers a variety of topics, ranging from stellar structure and evolution to galactic dynamics and dark matter. This course provides a graduate-level introduction to stellar astrophysics. It covers a variety of topics, ranging from stellar structure and evolution to galactic dynamics and dark matter.

Subjects

Historical astronomy | Historical astronomy | astronomical instrumentation | astronomical instrumentation | Stars: spectra | Stars: spectra | classification | classification | stellar structure equations | stellar structure equations | stellar evolution | stellar evolution | stellar oscillations | stellar oscillations | degenerate and collapsed stars | degenerate and collapsed stars | radio pulsars | radio pulsars | interacting binary systems | interacting binary systems | accretion disks | accretion disks | x-ray sources | x-ray sources | gravitational lenses | gravitational lenses | dark matter | dark matter | interstellar medium: HII regions | interstellar medium: HII regions | supernova remnants | supernova remnants | molecular clouds | molecular clouds | dust | dust | radiative transfer | radiative transfer | Jeans' mass | Jeans' mass | star formation | star formation | high-energy astrophysics | high-energy astrophysics | Compton scattering | Compton scattering | bremsstrahlung | bremsstrahlung | synchrotron radiation | synchrotron radiation | cosmic rays | cosmic rays | Galactic stellar distributions | Galactic stellar distributions | Oort constants | Oort constants | Oort limit | Oort limit | globular clusters. | globular clusters. | globular clusters | globular clusters

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.425 Extrasolar Planets: Physics and Detection Techniques (MIT) 12.425 Extrasolar Planets: Physics and Detection Techniques (MIT)

Description

This course covers the basic principles of planet atmospheres and interiors applied to the study of extrasolar planets (exoplanets). We focus on fundamental physical processes related to observable exoplanet properties. We also provide a quantitative overview of detection techniques and an introduction to the feasibility of the search for Earth-like planets, biosignatures and habitable conditions on exoplanets. This course covers the basic principles of planet atmospheres and interiors applied to the study of extrasolar planets (exoplanets). We focus on fundamental physical processes related to observable exoplanet properties. We also provide a quantitative overview of detection techniques and an introduction to the feasibility of the search for Earth-like planets, biosignatures and habitable conditions on exoplanets.

Subjects

extrasolar planets | extrasolar planets | planet atmospheres | planet atmospheres | planet interiors | planet interiors | transiting planets | transiting planets | planet albedos | planet albedos | astrometry | astrometry | gravitational lensing | gravitational lensing | habitable planets | habitable planets

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

A Cosmic Magnifying Glass A Cosmic Magnifying Glass

Description

Subjects

spiral | spiral | galaxies | galaxies | draco | draco | elliptical | elliptical | hst | hst | abell | abell | hubblespacetelescope | hubblespacetelescope | gravitationallensing | gravitationallensing

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT)

Description

Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay.

Subjects

Einstein's postulates | consequences for simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | relativistic effects and paradoxes | Minkowski diagrams | invariants and four-vectors | momentum | energy and mass | particle collisions | Relativity and electricity | Coulomb's law | magnetic fields | Newtonian cosmology | General Relativity | principle of equivalence | the Schwarzchild metric | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | particle trajectories | light trajectories | invariants | four-vectors | momentum | energy | mass | relativistic effects | paradoxes | electricity | time dilation | length contraction | clock synchronization | Schwarzchild metric | geodesics | Shaprio delay | relativistic kinematics | relativistic dynamics | electromagnetism | hubble expansion | universe | equivalence principle | curved space time | Ether Theory | constants | speed of light | c | graph | pythagorem theorem | triangle | arrows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.962 General Relativity (MIT)

Description

8.962 is MIT's graduate course in general relativity, which covers the basic principles of Einstein's general theory of relativity, differential geometry, experimental tests of general relativity, black holes, and cosmology.

Subjects

Spacetime | tensors | special relativity | differential geometry | Einstein's equation | gravitation | cosmological constant | Hilbert action | general relativity | gravitational waves | gravitational lensing | cosmology | Schwarzschild solution | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT)

Description

This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology.

Subjects

relativity | special relativity | Einstein's postulates | simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | relativistic effects | Minkowski diagrams | relativistic invariants | four-vectors | relativitistic particle collisions | relativity and electricity | Coulomb's law | magnetic fields | Newtonian cosmology | general relativity | Schwarzchild metric | gravitational | red shift | light trajectories | geodesics | Shapiro delay

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402 | plusars | galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.07 Dynamics (MIT)

Description

Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics.

Subjects

Curvilinear motion | carteian coordinates | dynamics | equations of motion | intrinsic coordinates | coordinate systems | work | energy | conservative forces | potential energy | linear impulse | mommentum | angular impulse | relative motion | rotating axes | translating axes | Newton's second law | inertial forces | accelerometers | Newtonian relativity | gravitational attraction | 2D rigid body kinematics | conservation laws for systems of particles | 2D rigid body dynamics | pendulums | 3D rigid body kinematics | 3d rigid body dynamics | inertia tensor | gyroscopic motion | torque-free motion | spin stabilization | variable mass systems | rocket equation | central foce motion | Keppler's laws | orbits | orbit transfer | vibration | spring mass systems | forced vibration | isolation | coupled oscillators | normal modes | wave propagation | cartesian coordinates | momentum | central force motion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT)

Description

This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology.

Subjects

relativity | special relativity | Einstein's postulates | simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | relativistic effects | Minkowski diagrams | relativistic invariants | four-vectors | relativitistic particle collisions | relativity and electricity | Coulomb's law | magnetic fields | Newtonian cosmology | general relativity | Schwarzchild metric | gravitational | red shift | light trajectories | geodesics | Shapiro delay

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402 | plusars | galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.901 Astrophysics I (MIT)

Description

This course provides a graduate-level introduction to stellar astrophysics. It covers a variety of topics, ranging from stellar structure and evolution to galactic dynamics and dark matter.

Subjects

Historical astronomy | astronomical instrumentation | Stars: spectra | classification | stellar structure equations | stellar evolution | stellar oscillations | degenerate and collapsed stars | radio pulsars | interacting binary systems | accretion disks | x-ray sources | gravitational lenses | dark matter | interstellar medium: HII regions | supernova remnants | molecular clouds | dust | radiative transfer | Jeans' mass | star formation | high-energy astrophysics | Compton scattering | bremsstrahlung | synchrotron radiation | cosmic rays | Galactic stellar distributions | Oort constants | Oort limit | globular clusters. | globular clusters

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.425 Extrasolar Planets: Physics and Detection Techniques (MIT)

Description

This course covers the basic principles of planet atmospheres and interiors applied to the study of extrasolar planets (exoplanets). We focus on fundamental physical processes related to observable exoplanet properties. We also provide a quantitative overview of detection techniques and an introduction to the feasibility of the search for Earth-like planets, biosignatures and habitable conditions on exoplanets.

Subjects

extrasolar planets | planet atmospheres | planet interiors | transiting planets | planet albedos | astrometry | gravitational lensing | habitable planets

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata