Searching for heat exchangers : 4 results found | RSS Feed for this search
10.302 Transport Processes (MIT) 10.302 Transport Processes (MIT)
Description
Principles of heat and mass transfer. Steady and transient conduction and diffusion. Radiative heat transfer. Convective transport of heat and mass in both laminar and turbulent flows. Emphasis on the development of a physical understanding of the underlying phenomena and upon the ability to solve real heat and mass transfer problems of engineering significance. Principles of heat and mass transfer. Steady and transient conduction and diffusion. Radiative heat transfer. Convective transport of heat and mass in both laminar and turbulent flows. Emphasis on the development of a physical understanding of the underlying phenomena and upon the ability to solve real heat and mass transfer problems of engineering significance.Subjects
heat transfer | heat transfer | mass transfer | mass transfer | transport processes | transport processes | conservation of energy | conservation of energy | heat diffusion | heat diffusion | boundary and initial conditions | boundary and initial conditions | conduction | conduction | steady-state conduction | steady-state conduction | heat diffusion equation | heat diffusion equation | spatial effects | spatial effects | radiation | radiation | blackbody exchange | blackbody exchange | extended surfaces | extended surfaces | gray surfaces | gray surfaces | heat exchangers | heat exchangers | convection | convection | boundary layers | boundary layers | steady diffusion | steady diffusion | transient diffusion | transient diffusionLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-10.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataTALAT Lecture 4601: Introduction to Brazing of Aluminium Alloys
Description
This lecture describes the characteristics of brazing aluminium and the process involved; it helps to understand the use potential and the limitations of brazing aluminium. Basic knowledge of aluminium alloys designation system, surface treatment and corrosion behaviour is assumed.Subjects
aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | brazing | soldering | bonding | joint design | fixture design | pre-braze cleaning | oxide removal | brazeable alloys | torch brazing | flux-dip brazing | furnace brazing | vacuum brazing | controlled atmosphere brazingbrazing filler metals | fluxes | mechanical properties | brazed joints | microstructure | corrosion | quality control | non-destructive testing | assembly tests | destructive testing | automotive heat exchangers | corematerials | ukoerLicense
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://core.materials.ac.uk/rss/talat.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataTALAT Lecture 4601: Introduction to Brazing of Aluminium Alloys
Description
This lecture describes the characteristics of brazing aluminium and the process involved; it helps to understand the use potential and the limitations of brazing aluminium. Basic knowledge of aluminium alloys designation system, surface treatment and corrosion behaviour is assumed.Subjects
aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | brazing | soldering | bonding | joint design | fixture design | pre-braze cleaning | oxide removal | brazeable alloys | torch brazing | flux-dip brazing | furnace brazing | vacuum brazing | controlled atmosphere brazingbrazing filler metals | fluxes | mechanical properties | brazed joints | microstructure | corrosion | quality control | non-destructive testing | assembly tests | destructive testing | automotive heat exchangers | corematerials | ukoer | Engineering | H000License
Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata10.302 Transport Processes (MIT)
Description
Principles of heat and mass transfer. Steady and transient conduction and diffusion. Radiative heat transfer. Convective transport of heat and mass in both laminar and turbulent flows. Emphasis on the development of a physical understanding of the underlying phenomena and upon the ability to solve real heat and mass transfer problems of engineering significance.Subjects
heat transfer | mass transfer | transport processes | conservation of energy | heat diffusion | boundary and initial conditions | conduction | steady-state conduction | heat diffusion equation | spatial effects | radiation | blackbody exchange | extended surfaces | gray surfaces | heat exchangers | convection | boundary layers | steady diffusion | transient diffusionLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata