Searching for high-level vision : 6 results found | RSS Feed for this search

9.71 Functional MRI of High-Level Vision (MIT) 9.71 Functional MRI of High-Level Vision (MIT)

Description

Fundamental questions about the human brain can now be answered using straightforward applications of fMRI. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information (including object recognition, visual attention, perceptual awareness, visually guided action, visual memory, and other topics). Students will read, present to the class, and critique current neuroimaging articles, as well as write detailed proposals for experiments of their own.This course covers the basics of fMRI, the strengths and limitations of fMRI compared to other techniques, and the design and analysis of fMRI experiments, focusing primarily on experiments on high-level vision. Upon completion, students should be able to understand and critique published fMRI Fundamental questions about the human brain can now be answered using straightforward applications of fMRI. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information (including object recognition, visual attention, perceptual awareness, visually guided action, visual memory, and other topics). Students will read, present to the class, and critique current neuroimaging articles, as well as write detailed proposals for experiments of their own.This course covers the basics of fMRI, the strengths and limitations of fMRI compared to other techniques, and the design and analysis of fMRI experiments, focusing primarily on experiments on high-level vision. Upon completion, students should be able to understand and critique published fMRI

Subjects

functional magnetic resonance imaging (fMRI) | functional magnetic resonance imaging (fMRI) | neural activity | neural activity | human | human | brain | brain | noninvasive | noninvasive | resolution | resolution | high-level vision | high-level vision | object recognition | object recognition | visual attention | visual attention | perceptual awareness | perceptual awareness | visually guided action | visually guided action | visual memory | visual memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.71 Functional MRI of High-Level Vision (MIT) 9.71 Functional MRI of High-Level Vision (MIT)

Description

This course covers the basics of fMRI, the strengths and limitations of fMRI compared to other techniques, and the design and analysis of fMRI experiments, focusing primarily on experiments on high-level vision. Upon completion, students should be able to understand and critique published fMRI papers, have a good grasp on what is known about high-level vision from fMRI, and design their own fMRI experiments. This course covers the basics of fMRI, the strengths and limitations of fMRI compared to other techniques, and the design and analysis of fMRI experiments, focusing primarily on experiments on high-level vision. Upon completion, students should be able to understand and critique published fMRI papers, have a good grasp on what is known about high-level vision from fMRI, and design their own fMRI experiments.

Subjects

functional magnetic resonance imaging (fMRI) | functional magnetic resonance imaging (fMRI) | neural activity | neural activity | human | human | brain | brain | noninvasive | noninvasive | resolution | resolution | high-level vision | high-level vision | object recognition | object recognition | visual attention | visual attention | perceptual awareness | perceptual awareness | visually guided action | visually guided action | visual memory | visual memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.71 Functional MRI of High-Level Vision (MIT) 9.71 Functional MRI of High-Level Vision (MIT)

Description

We are now at an unprecedented point in the field of neuroscience: We can watch the human brain in action as it sees, thinks, decides, reads, and remembers. Functional magnetic resonance imaging (fMRI) is the only method that enables us to monitor local neural activity in the normal human brain in a noninvasive fashion and with good spatial resolution. A large number of far-reaching and fundamental questions about the human mind and brain can now be answered using straightforward applications of this technology. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information including object recognition, mental imagery, visual attention, perceptual awareness, visually guided action, and visual memory. The goals of this course are to help We are now at an unprecedented point in the field of neuroscience: We can watch the human brain in action as it sees, thinks, decides, reads, and remembers. Functional magnetic resonance imaging (fMRI) is the only method that enables us to monitor local neural activity in the normal human brain in a noninvasive fashion and with good spatial resolution. A large number of far-reaching and fundamental questions about the human mind and brain can now be answered using straightforward applications of this technology. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information including object recognition, mental imagery, visual attention, perceptual awareness, visually guided action, and visual memory. The goals of this course are to help

Subjects

functional magnetic resonance imaging (fMRI) | functional magnetic resonance imaging (fMRI) | neural activity | neural activity | human | human | brain | brain | noninvasive | noninvasive | resolution | resolution | high-level vision | high-level vision | object recognition | object recognition | visual attention | visual attention | perceptual awareness | perceptual awareness | visually guided action | visually guided action | visual memory | visual memory | voxelwise analysis | voxelwise analysis | conjugate mirroring | conjugate mirroring | interleaved stimulus presentation | interleaved stimulus presentation | magnetization following excitation | magnetization following excitation | active voxels | active voxels | scanner drift | scanner drift | trial sorting | trial sorting | collinear factors | collinear factors | different model factors | different model factors | mock scanner | mock scanner | scanner session | scanner session | visual stimulation task | visual stimulation task | hemoglobin signal | hemoglobin signal | labeling plane | labeling plane | nearby voxels | nearby voxels | shimming coils | shimming coils | bias field estimation | bias field estimation | conscious encoding | conscious encoding | spiral imaging | spiral imaging | functional resolution | functional resolution | hemodynamic activity | hemodynamic activity | direct cortical stimulation | direct cortical stimulation | physiological noise | physiological noise | refractory effects | refractory effects | independent statistical tests. | independent statistical tests.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.71 Functional MRI of High-Level Vision (MIT)

Description

Fundamental questions about the human brain can now be answered using straightforward applications of fMRI. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information (including object recognition, visual attention, perceptual awareness, visually guided action, visual memory, and other topics). Students will read, present to the class, and critique current neuroimaging articles, as well as write detailed proposals for experiments of their own.This course covers the basics of fMRI, the strengths and limitations of fMRI compared to other techniques, and the design and analysis of fMRI experiments, focusing primarily on experiments on high-level vision. Upon completion, students should be able to understand and critique published fMRI

Subjects

functional magnetic resonance imaging (fMRI) | neural activity | human | brain | noninvasive | resolution | high-level vision | object recognition | visual attention | perceptual awareness | visually guided action | visual memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.71 Functional MRI of High-Level Vision (MIT)

Description

This course covers the basics of fMRI, the strengths and limitations of fMRI compared to other techniques, and the design and analysis of fMRI experiments, focusing primarily on experiments on high-level vision. Upon completion, students should be able to understand and critique published fMRI papers, have a good grasp on what is known about high-level vision from fMRI, and design their own fMRI experiments.

Subjects

functional magnetic resonance imaging (fMRI) | neural activity | human | brain | noninvasive | resolution | high-level vision | object recognition | visual attention | perceptual awareness | visually guided action | visual memory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.71 Functional MRI of High-Level Vision (MIT)

Description

We are now at an unprecedented point in the field of neuroscience: We can watch the human brain in action as it sees, thinks, decides, reads, and remembers. Functional magnetic resonance imaging (fMRI) is the only method that enables us to monitor local neural activity in the normal human brain in a noninvasive fashion and with good spatial resolution. A large number of far-reaching and fundamental questions about the human mind and brain can now be answered using straightforward applications of this technology. This is particularly true in the area of high-level vision, the study of how we interpret and use visual information including object recognition, mental imagery, visual attention, perceptual awareness, visually guided action, and visual memory. The goals of this course are to help

Subjects

functional magnetic resonance imaging (fMRI) | neural activity | human | brain | noninvasive | resolution | high-level vision | object recognition | visual attention | perceptual awareness | visually guided action | visual memory | voxelwise analysis | conjugate mirroring | interleaved stimulus presentation | magnetization following excitation | active voxels | scanner drift | trial sorting | collinear factors | different model factors | mock scanner | scanner session | visual stimulation task | hemoglobin signal | labeling plane | nearby voxels | shimming coils | bias field estimation | conscious encoding | spiral imaging | functional resolution | hemodynamic activity | direct cortical stimulation | physiological noise | refractory effects | independent statistical tests.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata