Searching for hydra : 164 results found | RSS Feed for this search

1 2 3 4 5 6 7

22.313 Thermal Hydraulics in Nuclear Power Technology (MIT) 22.313 Thermal Hydraulics in Nuclear Power Technology (MIT)

Description

This course covers the thermo-fluid dynamic phenomena and analysis methods for conventional and nuclear power stations. Specific topics include: kinematics and dynamics of two-phase flows; steam separation; boiling, instabilities, and critical conditions; single-channel transient analysis; multiple channels connected at plena; loop analysis including single and two-phase natural circulation; and subchannel analysis.Starting in Spring 2007, this course will be offered jointly in the Departments of Nuclear Science and Engineering, Mechanical Engineering, and Chemical Engineering, and will be titled "Thermal Hydraulics in Power Technology." This course covers the thermo-fluid dynamic phenomena and analysis methods for conventional and nuclear power stations. Specific topics include: kinematics and dynamics of two-phase flows; steam separation; boiling, instabilities, and critical conditions; single-channel transient analysis; multiple channels connected at plena; loop analysis including single and two-phase natural circulation; and subchannel analysis.Starting in Spring 2007, this course will be offered jointly in the Departments of Nuclear Science and Engineering, Mechanical Engineering, and Chemical Engineering, and will be titled "Thermal Hydraulics in Power Technology."

Subjects

reactor | reactor | nuclear reactor | nuclear reactor | thermal behavior | thermal behavior | hydraulic | hydraulic | hydraulic behavior | hydraulic behavior | heat | heat | modeling | modeling | steam | steam | stability | stability | instability | instability | thermo-fluid dynamic phenomena | thermo-fluid dynamic phenomena | single-heated channel-transient analysis | single-heated channel-transient analysis | Multiple-heated channels | Multiple-heated channels | Loop analysis | Loop analysis | single and two-phase natural circulation | single and two-phase natural circulation | Kinematics | Kinematics | two-phase flows | two-phase flows | subchannel analysis | subchannel analysis | Core thermal analysis | Core thermal analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.313J Thermal Hydraulics in Power Technology (MIT) 22.313J Thermal Hydraulics in Power Technology (MIT)

Description

This course covers the thermo-fluid dynamic phenomena and analysis methods for conventional and nuclear power stations. Specific topics include: kinematics and dynamics of two-phase flows; steam separation; boiling, instabilities, and critical conditions; single-channel transient analysis; multiple channels connected at plena; loop analysis including single and two-phase natural circulation; and subchannel analysis. This course covers the thermo-fluid dynamic phenomena and analysis methods for conventional and nuclear power stations. Specific topics include: kinematics and dynamics of two-phase flows; steam separation; boiling, instabilities, and critical conditions; single-channel transient analysis; multiple channels connected at plena; loop analysis including single and two-phase natural circulation; and subchannel analysis.

Subjects

reactor | reactor | nuclear reactor | nuclear reactor | thermal behavior | thermal behavior | hydraulic | hydraulic | hydraulic behavior | hydraulic behavior | heat | heat | modeling | modeling | steam | steam | stability | stability | instability | instability | thermo-fluid dynamic phenomena | thermo-fluid dynamic phenomena | single-heated channel-transient analysis | single-heated channel-transient analysis | Multiple-heated channels | Multiple-heated channels | Loop analysis | Loop analysis | single and two-phase natural circulation | single and two-phase natural circulation | Kinematics | Kinematics | two-phase flows | two-phase flows | subchannel analysis | subchannel analysis | Core thermal analysis | Core thermal analysis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 3705: Drawing of Automotive Sheet Metal Parts

Description

This lecture describes the special requirements for the successful fabrication of automotive aluminium sheet metal parts with respect to material properties, machinery and drawing equipment and tools. Background in production engineering, some knowledge of sheet metal forming principles and familiarity with the subject matter covered in TALAT This lectures 3701- 3704 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | machining | forming | forging | sheet | paint bake cycle | strength | anisotropy | stretch forming | drawing | bulge | spherical punch | hemispherical punch | hydraulic stretch forming | deep drawing | drawing irregular sheet shapes | material flow | draw beads | blankholder | die cushion | four-point die cushion | hydraulic press equipment | blankholder force | servo-hydraulic die cushion | press table | adjustable spindle sleeves | a single action hydraulic press | spindle sleeve forces | force - displacement curves | multi-point drawing arrangement | tool materials | surface coatings | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 3705: Drawing of Automotive Sheet Metal Parts

Description

This lecture describes the special requirements for the successful fabrication of automotive aluminium sheet metal parts with respect to material properties, machinery and drawing equipment and tools. Background in production engineering, some knowledge of sheet metal forming principles and familiarity with the subject matter covered in TALAT This lectures 3701- 3704 is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | machining | forming | forging | sheet | paint bake cycle | strength | anisotropy | stretch forming | drawing | bulge | spherical punch | hemispherical punch | hydraulic stretch forming | deep drawing | drawing irregular sheet shapes | material flow | draw beads | blankholder | die cushion | four-point die cushion | hydraulic press equipment | blankholder force | servo-hydraulic die cushion | press table | adjustable spindle sleeves | a single action hydraulic press | spindle sleeve forces | force - displacement curves | multi-point drawing arrangement | tool materials | surface coatings | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.39 Integration of Reactor Design, Operations, and Safety (MIT) 22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.Technical RequirementsSpecial software is required to use some of the files in this course: .exe and .zip. The .in files are input data files. This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.Technical RequirementsSpecial software is required to use some of the files in this course: .exe and .zip. The .in files are input data files.

Subjects

nuclear reactor | nuclear reactor | nuclear power | nuclear power | NRC | NRC | PWR | PWR | pressurized water reactor | pressurized water reactor | GFR | GFR | nuclear safety | nuclear safety | meltdown | meltdown | nuclear risk | nuclear risk | PRA | PRA | probabalistic risk assessment | probabalistic risk assessment | risk assessment | risk assessment | thermal | thermal | hydraulic | hydraulic | nuclear fuel | nuclear fuel | nuclear waste | nuclear waste | accident | accident | radiation | radiation | radioactivity | radioactivity | nuclear plant | nuclear plant | cooling | cooling | seabrook | seabrook | fission | fission | uranium | uranium | half-life | half-life | plutonium | plutonium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.442 Molecular Structure of Biological Materials (MIT) BE.442 Molecular Structure of Biological Materials (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.72 Groundwater Hydrology (MIT) 1.72 Groundwater Hydrology (MIT)

Description

This course covers fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. The class includes laboratory and computer demonstrations.Technical RequirementsFEFLOW® software  is required for two problem sets on this course site. FEFLOW® (Finite Element subsurface FLOW system) is a 3-D groundwater modeling software, developed by WASY, a German consulting firm. FEFLOW® uses the finite element method to solve 3D groundwater flow equations. RealOne™ Player software is required to run the .rm files found on this course site. This course covers fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. The class includes laboratory and computer demonstrations.Technical RequirementsFEFLOW® software  is required for two problem sets on this course site. FEFLOW® (Finite Element subsurface FLOW system) is a 3-D groundwater modeling software, developed by WASY, a German consulting firm. FEFLOW® uses the finite element method to solve 3D groundwater flow equations. RealOne™ Player software is required to run the .rm files found on this course site.

Subjects

D'arcy equation | D'arcy equation | flow nets | flow nets | mass conservation | mass conservation | the aquifer flow equation | the aquifer flow equation | heterogeneity and anisotropy | heterogeneity and anisotropy | storage properties | storage properties | regional circulation | regional circulation | unsaturated flow | unsaturated flow | recharge | recharge | stream-aquifer interaction | stream-aquifer interaction | well hydraulics | well hydraulics | flow through fractured rock | flow through fractured rock | numerical models | numerical models | groundwater quality | groundwater quality | contaminant transport processes | contaminant transport processes | dispersion | dispersion | decay | decay | adsorption | adsorption

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.091 Nuclear Reactor Safety (MIT) 22.091 Nuclear Reactor Safety (MIT)

Description

Problems in nuclear engineering often involve applying knowledge from many disciplines simultaneously in achieving satisfactory solutions. The course will focus on understanding the complete nuclear reactor system including the balance of plant, support systems and resulting interdependencies affecting the overall safety of the plant and regulatory oversight. Both the Seabrook and Pilgrim nuclear plant simulators will be used as part of the educational experience to provide as realistic as possible understanding of nuclear power systems short of being at the reactor. Problems in nuclear engineering often involve applying knowledge from many disciplines simultaneously in achieving satisfactory solutions. The course will focus on understanding the complete nuclear reactor system including the balance of plant, support systems and resulting interdependencies affecting the overall safety of the plant and regulatory oversight. Both the Seabrook and Pilgrim nuclear plant simulators will be used as part of the educational experience to provide as realistic as possible understanding of nuclear power systems short of being at the reactor.

Subjects

nuclear | nuclear | reactor | reactor | safety | safety | dryout heat flux | dryout heat flux | preexisting hydrogen | preexisting hydrogen | blowdown gases | blowdown gases | downward propagation limit | downward propagation limit | debris dispersal | debris dispersal | direct containment heating | direct containment heating | gas blowthrough | gas blowthrough | seal table room | seal table room | subcompartment structures | subcompartment structures | compartmentalized geometries | compartmentalized geometries | overlying liquid layer | overlying liquid layer | preexisting atmosphere | preexisting atmosphere | blowdown time | blowdown time | melt generator | melt generator | detonation adiabatic | detonation adiabatic | thermohydraulic codes | thermohydraulic codes | hydrodynamic fragmentation | hydrodynamic fragmentation | vent clearing | vent clearing | combustion completeness | combustion completeness | containment pressurization | containment pressurization | melt retention | melt retention | containment loads | containment loads | melt ejection | melt ejection | containment geometry | containment geometry | hole ablation | hole ablation | Sandia National Laboratories | Sandia National Laboratories | Heat Transfer Conf | Heat Transfer Conf | Nuclear Regulatory Commission Report | Nuclear Regulatory Commission Report | Heat Mass Transfer | Heat Mass Transfer | The Combustion Institute | The Combustion Institute | Combustion Symposium International | Combustion Symposium International | New York | New York | Santa Barbara | Santa Barbara | Argonne National Laboratory | Argonne National Laboratory | Fluid Mech | Fluid Mech | Zion Probabilistic Safety Study | Zion Probabilistic Safety Study | Los Angeles | Los Angeles | Impact of Hydrogen | Impact of Hydrogen | Topical Meeting | Topical Meeting | Water Reactor Safety | Water Reactor Safety | Water Trans | Water Trans | Academic Press All | Academic Press All | American Society of Mechanical Engineers | American Society of Mechanical Engineers | Specialists Meeting | Specialists Meeting | University of California | University of California | Brookhaven National Laboratory | Brookhaven National Laboratory | Calvert Cliffs | Calvert Cliffs | Fourth Int | Fourth Int | International Conference | International Conference | New Trends. | New Trends.

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.101 Introduction to Civil and Environmental Engineering Design I (MIT) 1.101 Introduction to Civil and Environmental Engineering Design I (MIT)

Description

This sophomore-level course is a project-oriented introduction to the principles and practice of engineering design. Design projects and exercises are chosen that relate to the built and natural environments. Emphasis is placed on achieving function and sustainability through choice of materials and processes, compatibility with natural cycles, and the use of active or adaptive systems. The course also encourages development of hands-on skills, teamwork, and communication; exercises and projects engage students in the building, implementation, and testing of their designs. This sophomore-level course is a project-oriented introduction to the principles and practice of engineering design. Design projects and exercises are chosen that relate to the built and natural environments. Emphasis is placed on achieving function and sustainability through choice of materials and processes, compatibility with natural cycles, and the use of active or adaptive systems. The course also encourages development of hands-on skills, teamwork, and communication; exercises and projects engage students in the building, implementation, and testing of their designs.

Subjects

Design | Design | water resources | water resources | water treatment | water treatment | structures | structures | structural design | structural design | fabrication | fabrication | testing | testing | hardware | hardware | laboratory experiments | laboratory experiments | pH | pH | neutralization | neutralization | hydraulic conductivity | hydraulic conductivity | porosity | porosity | truss | truss | tension | tension | beam bending | beam bending | beam buckling | beam buckling | thermal design | thermal design | heating | heating | cooling | cooling | thermal infrared camera | thermal infrared camera | thermal IR imaging | thermal IR imaging | heat loss | heat loss

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.060 Engineering Mechanics II (MIT) 1.060 Engineering Mechanics II (MIT)

Description

This subject provides an introduction to fluid mechanics. Students are introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of fluids and learn how to solve a variety of problems of interest to civil and environmental engineers. While there is a chance to put skills from calculus and differential equations to use in this subject, the emphasis is on physical understanding of why a fluid behaves the way it does. The aim is to make the students think as a fluid. In addition to relating a working knowledge of fluid mechanics, the subject prepares students for higher-level subjects in fluid dynamics. This subject provides an introduction to fluid mechanics. Students are introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of fluids and learn how to solve a variety of problems of interest to civil and environmental engineers. While there is a chance to put skills from calculus and differential equations to use in this subject, the emphasis is on physical understanding of why a fluid behaves the way it does. The aim is to make the students think as a fluid. In addition to relating a working knowledge of fluid mechanics, the subject prepares students for higher-level subjects in fluid dynamics.

Subjects

fluid mechanics | fluid mechanics | fluids | fluids | civil and environmental engineering | civil and environmental engineering | differential equations | differential equations | calculus | calculus | flow | flow | movement | movement | wave forms | wave forms | Bernoulli's theorem | Bernoulli's theorem | wavelets | wavelets | mechanics | mechanics | solids | solids | hydrostatics | hydrostatics | mass | mass | momentum | momentum | energy | energy | flow nets | flow nets | velocity | velocity | laminar flow | laminar flow | turbulent flow | turbulent flow | groundwater | groundwater | hydraulics | hydraulics | backwater curves | backwater curves

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.72 Groundwater Hydrology (MIT) 1.72 Groundwater Hydrology (MIT)

Description

This course covers fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. The class includes laboratory and computer demonstrations. This course covers fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. The class includes laboratory and computer demonstrations.

Subjects

D'arcy equation | D'arcy equation | flow nets | flow nets | mass conservation | mass conservation | the aquifer flow equation | the aquifer flow equation | heterogeneity and anisotropy | heterogeneity and anisotropy | storage properties | storage properties | regional circulation | regional circulation | unsaturated flow | unsaturated flow | recharge | recharge | stream-aquifer interaction | stream-aquifer interaction | well hydraulics | well hydraulics | flow through fractured rock | flow through fractured rock | numerical models | numerical models | groundwater quality | groundwater quality | contaminant transport processes | contaminant transport processes | dispersion | dispersion | decay | decay | adsorption | adsorption

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.361 Advanced Soil Mechanics (MIT) 1.361 Advanced Soil Mechanics (MIT)

Description

This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice. This class presents the application of principles of soil mechanics. It considers the following topics: the origin and nature of soils; soil classification; the effective stress principle; hydraulic conductivity and seepage; stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses; bearing capacity and slope stability; consolidation theory and settlement analysis; and laboratory and field methods for evaluation of soil properties in design practice.

Subjects

soil | soil | origin and nature of soils | origin and nature of soils | soil classification | soil classification | effective stress principle | effective stress principle | hydraulic conductivity and seepage | hydraulic conductivity and seepage | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | stress-strain-strength behavior of cohesionless and cohesive soils and application to lateral earth stresses | bearing capacity and slope stability | bearing capacity and slope stability | consolidation theory | consolidation theory | settlement analyses | settlement analyses | laboratory methods | laboratory methods | soil properties | soil properties | design practice | design practice

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Developmental and Molecular Biology of Regeneration (MIT) 7.342 Developmental and Molecular Biology of Regeneration (MIT)

Description

How does a regenerating animal "know" what's missing? How are stem cells or differentiated cells used to create new tissues during regeneration? In this class we will take a comparative approach to explore this fascinating problem by critically examining classic and modern scientific literature about the developmental and molecular biology of regeneration. We will learn about conserved developmental pathways that are necessary for regeneration, and we will discuss the relevance of these findings for regenerative medicine. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highl How does a regenerating animal "know" what's missing? How are stem cells or differentiated cells used to create new tissues during regeneration? In this class we will take a comparative approach to explore this fascinating problem by critically examining classic and modern scientific literature about the developmental and molecular biology of regeneration. We will learn about conserved developmental pathways that are necessary for regeneration, and we will discuss the relevance of these findings for regenerative medicine. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highl

Subjects

Regeneration | Regeneration | blastema | blastema | embryo | embryo | progenitor | progenitor | stem cells | stem cells | differentiation | differentiation | dedifferentiation | dedifferentiation | hydra | hydra | morphallaxis | morphallaxis | limb | limb | organ | organ | zebrafish | zebrafish | homeostasis | homeostasis | self-renewal | self-renewal | regenerative medicine | regenerative medicine | differentitate | differentitate | regulate | regulate | salamander | salamander | catenin | catenin | newt | newt | liver | liver | pluriptent | pluriptent | fibroblast | fibroblast

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Photosynthesis: Life from Light (MIT) 7.343 Photosynthesis: Life from Light (MIT)

Description

In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co

Subjects

photosynthesis | photosynthesis | life from light | life from light | conversion | conversion | solar energy | solar energy | chemical energy | chemical energy | biogeochemical cycles | biogeochemical cycles | global warming | global warming | physical | physical | chemical and biological reactions | chemical and biological reactions | light harvesting | light harvesting | photochemistry | photochemistry | protein complexes | protein complexes | synthesis of ATP | synthesis of ATP | reduction of CO2 | reduction of CO2 | carbohydrates | carbohydrates | light-driven proton pumps | light-driven proton pumps | anoxygenic photosynthesis | anoxygenic photosynthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.522 Space Propulsion (MIT) 16.522 Space Propulsion (MIT)

Description

Space Propulsion begins with a review of rocket propulsion fundamentals. The course then proceeds into advanced propulsion concepts, ranging from chemical to electrical engines. Propulsion system selection criteria and mission analysis are introduced. The bulk of the semester is devoted to the physics and engineering of various engine classes, including electrothermal, electrostatic and electro-magnetic. Specific topics include arcjets, ion engines, Hall thrusters and colloid thrusters. Space Propulsion begins with a review of rocket propulsion fundamentals. The course then proceeds into advanced propulsion concepts, ranging from chemical to electrical engines. Propulsion system selection criteria and mission analysis are introduced. The bulk of the semester is devoted to the physics and engineering of various engine classes, including electrothermal, electrostatic and electro-magnetic. Specific topics include arcjets, ion engines, Hall thrusters and colloid thrusters.

Subjects

space propulsion | space propulsion | rocket propulsion | rocket propulsion | spacecraft propulsion requirements | spacecraft propulsion requirements | propulsion | propulsion | space mission analysis | space mission analysis | hydrazine | hydrazine | monopropellant thrusters | monopropellant thrusters | bipropellants | bipropellants | solid propellant | solid propellant | arcjets | arcjets | ion engines | ion engines | hall thrusters | hall thrusters | electromagnetic plasma acceleration | electromagnetic plasma acceleration | pulsed plasma thrusters | pulsed plasma thrusters | colloid thrusters | colloid thrusters | FEEP thrusters | FEEP thrusters

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.442 Molecular Structure of Biological Materials (BE.442) (MIT) 20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.39 Integration of Reactor Design, Operations, and Safety (MIT) 22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations. This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.

Subjects

nuclear reactor | nuclear reactor | nuclear power | nuclear power | NRC | NRC | PWR | PWR | pressurized water reactor | pressurized water reactor | GFR | GFR | LWR | LWR | light water reactor | light water reactor | nuclear safety | nuclear safety | meltdown | meltdown | nuclear risk | nuclear risk | PRA | PRA | probabalistic risk assessment | probabalistic risk assessment | risk assessment | risk assessment | thermal | thermal | hydraulic | hydraulic | nuclear fuel | nuclear fuel | nuclear waste | nuclear waste | accident | accident | radiation radioactivity | radiation radioactivity | nuclear plant | nuclear plant | cooling Seabrook | cooling Seabrook | fission | fission | uranium | uranium | half-life | half-life | plutonium | plutonium | economics of nuclear power | economics of nuclear power | materials slection | materials slection | IRIS | IRIS | materials selection | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.442 Molecular Structure of Biological Materials (BE.442) (MIT) 20.442 Molecular Structure of Biological Materials (BE.442) (MIT)

Description

This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to gi

Subjects

protein | protein | hydration | hydration | amino acid | amino acid | ECM | ECM | extracellular matrix | extracellular matrix | peptide | peptide | helix | helix | DNA | DNA | RNA | RNA | biomaterial | biomaterial | biotech | biotech | biotechnology | biotechnology | nanomaterial | nanomaterial | beta-sheet | beta-sheet | beta sheet | beta sheet | molecular structure | molecular structure | bioengineering | bioengineering | silk | silk | biomimetic | biomimetic | self-assembly | self-assembly | keratin | keratin | collagen | collagen | adhesive | adhesive | GFP | GFP | fluorescent | fluorescent | polymer | polymer | lipid | lipid

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Cancer Metabolism

Description

Dr Patrick Pollard tells us about his research on cancer metabolism. Cancer cells produce energy predominately by a high rate of glycolysis. It has been suggested that this change in metabolism is a fundamental cause of cancer. Dr Patrick Pollard aims to elucidate the alternative metabolic strategies used by cancer cells to proliferate, even under conditions of stress. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

renal cancer | hypoxia | fumarate hydratase | kidney | cancer metabolism | renal cancer | hypoxia | fumarate hydratase | kidney | cancer metabolism

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Cancer Metabolism

Description

Dr Patrick Pollard tells us about his research on cancer metabolism. Cancer cells produce energy predominately by a high rate of glycolysis. It has been suggested that this change in metabolism is a fundamental cause of cancer. Dr Patrick Pollard aims to elucidate the alternative metabolic strategies used by cancer cells to proliferate, even under conditions of stress. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

renal cancer | hypoxia | fumarate hydratase | kidney | cancer metabolism | renal cancer | hypoxia | fumarate hydratase | kidney | cancer metabolism

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

C0000P0104

Description

life aid

Subjects

svmsvet | drugs | lifeaid | rehydrationtherapy | dehydrationtreatment

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

C0000P0103

Description

lectade

Subjects

svmsvet | drugs | dehydrationtreatment | rehydrationagent | eletrolytes

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

C0000P0104

Description

life aid

Subjects

svmsvet | drugs | lifeaid | rehydrationtherapy | dehydrationtreatment

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

C0000P0103

Description

lectade

Subjects

svmsvet | drugs | dehydrationtreatment | rehydrationagent | eletrolytes

License

http://creativecommons.org/licenses/by-nc-sa/2.0/

Site sourced from

Nottingham Vet School | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21W.730-4 Writing on Contemporary Issues: Food for Thought: Writing and Reading about the Cultures of Food (MIT) 21W.730-4 Writing on Contemporary Issues: Food for Thought: Writing and Reading about the Cultures of Food (MIT)

Description

"What people do with food is an act that reveals how they construe the world." - Marcella Hazan, The Classic Italian Cookbook If you are what you eat, what are you? Food is at once the stuff of life and a potent symbol; it binds us to the earth, to our families, and to our cultures. In this class, we explore many of the fascinating issues that surround food as both material fact and personal and cultural symbol. We read essays by Toni Morrison, Michael Pollan, Wendell Berry, and others on such topics as family meals, eating as an "agricultural act" (Berry), slow food, and food's ability to awaken us to "our own powers of enjoyment" (M. F. K. Fisher). We will also read Pollan's most recent book, In Defense of Food, and discuss the issues it raises as well as "What people do with food is an act that reveals how they construe the world." - Marcella Hazan, The Classic Italian Cookbook If you are what you eat, what are you? Food is at once the stuff of life and a potent symbol; it binds us to the earth, to our families, and to our cultures. In this class, we explore many of the fascinating issues that surround food as both material fact and personal and cultural symbol. We read essays by Toni Morrison, Michael Pollan, Wendell Berry, and others on such topics as family meals, eating as an "agricultural act" (Berry), slow food, and food's ability to awaken us to "our own powers of enjoyment" (M. F. K. Fisher). We will also read Pollan's most recent book, In Defense of Food, and discuss the issues it raises as well as

Subjects

food | food | hunger | hunger | good calories | good calories | lipid hypothesis | lipid hypothesis | diet | diet | nutrients | nutrients | unhappy meals | unhappy meals | nutritionism | nutritionism | cuisine | cuisine | carbohydrates | carbohydrates | fats | fats | proteins | proteins | water | water | plants | plants | animals | animals | fungus or fermented products like alcohol | fungus or fermented products like alcohol | human cultures | human cultures | hunting and gathering | hunting and gathering | farming | farming | ranching | ranching | fishing | fishing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata