Searching for joints : 52 results found | RSS Feed for this search

1 2

TALAT Lecture 4105: Combination of Joining Methods

Description

This lecture describes the combination of mechanical joining with adhesive bonding with respect to application criteria, productions considerations and resultant properties. General mechanical engineering background and familiarity with the subject matter covered in TALAT This lectures 4101- 4104 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | classification | combined joints | elementary joints | adhesive joining | fold-adhesive joints | aircraft industry | material locking joints | form locking joints | shear testing | fractured surface | production | adhesive-clinch joint combination | technical operations | clinched joints | adhesives | combined joining technologies | fatigue tests | mechanical properties | impact strength | shear strength | ageing | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4105: Combination of Joining Methods

Description

This lecture describes the combination of mechanical joining with adhesive bonding with respect to application criteria, productions considerations and resultant properties. General mechanical engineering background and familiarity with the subject matter covered in TALAT This lectures 4101- 4104 is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | classification | combined joints | elementary joints | adhesive joining | fold-adhesive joints | aircraft industry | material locking joints | form locking joints | shear testing | fractured surface | production | adhesive-clinch joint combination | technical operations | clinched joints | adhesives | combined joining technologies | fatigue tests | mechanical properties | impact strength | shear strength | ageing | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2302: Design of Joints

Description

This lecture provides a view of types of joints in aluminium structures and how to design and calculate frequently used joints. Basic structural mechanics and knowledge of design philosophy, structural aluminium alloys and product forms is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | welding | screws | bolts | riveting | solid state welding | special mechanical joints | joints in thin-walled structures | thread forming screws | blind rivets | cartridge fired pin connections | spot welding | adhesive bonded connections | fasteners | mechanical properties | connections | friction type bolt joints | fastenings | failure modes | deformation | spot welds | design strength | hole bearing | tilting | sheet tearing | edge failure | tension | shear | tensile failure | pull-through failure | pull-over failure | pull-out failure | lap joints | pin connections | heat affected zone | butt welds | fillet welds | ultimate limit state | welded connections | strength | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2302: Design of Joints

Description

This lecture provides a view of types of joints in aluminium structures and how to design and calculate frequently used joints. Basic structural mechanics and knowledge of design philosophy, structural aluminium alloys and product forms is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | welding | screws | bolts | riveting | solid state welding | special mechanical joints | joints in thin-walled structures | thread forming screws | blind rivets | cartridge fired pin connections | spot welding | adhesive bonded connections | fasteners | mechanical properties | connections | friction type bolt joints | fastenings | failure modes | deformation | spot welds | design strength | hole bearing | tilting | sheet tearing | edge failure | tension | shear | tensile failure | pull-through failure | pull-over failure | pull-out failure | lap joints | pin connections | heat affected zone | butt welds | fillet welds | ultimate limit state | welded connections | strength | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4101: Definition and Classification of Mechanical Fastening Methods

Description

This lecture introduces the principal types of mechanical fastening methods, i.e. screw joints, folding, riveting and clinching by definitions and classification; it illustrates the great variety of types of mechanical fastening methods and systems available for joining aluminium parts. General mechanical engineering background is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | thin-walled components | fabrication | joints | screw joints | thin sheets | flow-drilling screws | folding | straight-edged sheets | overlaps in folded joints | riveting | indirect riveting | rivet forms | blind rivet | fastening elements | clinching | local incision | car door aggregate carrier | technological characteristics | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Industrial robots : Design for Manufacture HNC in Engineering Year 1 : presentation transcript

Description

This open educational resource was released through the Higher Education Academy Engineering Subject Centre Open Engineering Resources Pilot project. The project was funded by HEFCE and the JISC/HE Academy UKOER programme.

Subjects

ukoer | engscoer | cc-by | leicester college | leicester college tech | leicestercollegeoer | engineering department | education | higher education | learning | cartesian | cylindrical | edexcel | nqf l4 | gantry robots | rectilinear robots | robots | work envelop | industrial robots | manufacturing | polar | rotary joints | articulated | linear joints | robots arms | edexcel hn unit design for manufacturing | design | hn | robot joints | robotics | design for manufacture | jointed arm | Engineering | H000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4101: Definition and Classification of Mechanical Fastening Methods

Description

This lecture introduces the principal types of mechanical fastening methods, i.e. screw joints, folding, riveting and clinching by definitions and classification; it illustrates the great variety of types of mechanical fastening methods and systems available for joining aluminium parts. General mechanical engineering background is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | thin-walled components | fabrication | joints | screw joints | thin sheets | flow-drilling screws | folding | straight-edged sheets | overlaps in folded joints | riveting | indirect riveting | rivet forms | blind rivet | fastening elements | clinching | local incision | car door aggregate carrier | technological characteristics | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

4.501 Architectural Construction and Computation (MIT) 4.501 Architectural Construction and Computation (MIT)

Description

This class investigates the use of computers in architectural design and construction. It begins with a pre-prepared design computer model, which is used for testing and process investigation in construction. It then explores the process of construction from all sides of the practice: detail design, structural design, and both legal and computational issues. This class investigates the use of computers in architectural design and construction. It begins with a pre-prepared design computer model, which is used for testing and process investigation in construction. It then explores the process of construction from all sides of the practice: detail design, structural design, and both legal and computational issues.

Subjects

architecture | architecture | digital fabrication | digital fabrication | CAD / CAM | CAD / CAM | machining | machining | computer aided design | computer aided design | digital prototype | digital prototype | fabrication | fabrication | Gehry | Gehry | TriPyramid | TriPyramid | Stata Center | Stata Center | Disney Concert Hall | Disney Concert Hall | digital architecture | digital architecture | 3D modelling | 3D modelling | 3D printing | 3D printing | Palladio | Palladio | design and manufacture | design and manufacture | construction | construction | assembly | assembly | tectonics | tectonics | building | building | building materials | building materials | joints | joints | connections | connections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.021 Musculoskeletal Pathophysiology (MIT) HST.021 Musculoskeletal Pathophysiology (MIT)

Description

This course covers the growth, development and structure of normal bone and joints, the biomechanics of bone connective tissues, and their response to stress, calcium and phosphate homeostasis. Additional topics include regulation by parathyroid hormone and vitamin D, the pathogenesis of metabolic bone diseases and diseases of connective tissues, joints and muscle with consideration of possible mechanisms and underlying metabolic derangements. Lecturers Dr. Paul Joseph Anderson Dr. Robert Horatio Brown, Jr. Dr. Marie Demay Dr. Stephen Martin Krane Dr. Young-Jo Kim Dr. Henry Jay Mankin Dr. Bjorn Reino Olsen Dr. John Thomas Potts Dr. Alan Lewis Schiller Dr. Brian Dale Snyder   This course covers the growth, development and structure of normal bone and joints, the biomechanics of bone connective tissues, and their response to stress, calcium and phosphate homeostasis. Additional topics include regulation by parathyroid hormone and vitamin D, the pathogenesis of metabolic bone diseases and diseases of connective tissues, joints and muscle with consideration of possible mechanisms and underlying metabolic derangements. Lecturers Dr. Paul Joseph Anderson Dr. Robert Horatio Brown, Jr. Dr. Marie Demay Dr. Stephen Martin Krane Dr. Young-Jo Kim Dr. Henry Jay Mankin Dr. Bjorn Reino Olsen Dr. John Thomas Potts Dr. Alan Lewis Schiller Dr. Brian Dale Snyder  

Subjects

musculoskeletal | musculoskeletal | bone | bone | joints | joints | connective tissue | connective tissue | biomechanics | biomechanics | muscle | muscle | metabolic bone diseases | metabolic bone diseases | calcium homeostasis | calcium homeostasis | phosphate homeostasis | phosphate homeostasis | mineralization | mineralization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4104: Application Characteristics

Description

This lecture describes the parameters governing performance of rivet and clinch joints. General mechanical engineering background and familiarity with the subject matter covered in TALAT This lectures 4101- 4103 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | design | riveting | edges | rivet diameters | riveted joint | corrosion prevention | composite joints | clinching tool | strength | operational life | material surface | shear-tensile testing | dynamic reversed loading | geometry | quasi-statically loaded | multiple-point joints | fatigue tests | impact testing | flanged double-C-channels | cost comparison | steel | sheets | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4702: Factors Influencing the Strength of Adhesive Joints

Description

This lecture describes the factors governing the strength of adhesive joints in order to appreciate these factors for the design of adhesively bonded joints, i.e. geometry of joint, stiffness and strength of the adjoining parts, stress distribution in the adhesive layer as well as the effects of humidity and ageing. General background in production engineering and material science, some knowledge of mechanics and polymer science is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | adhesive bonding | strength | design | stress distributions | lap joints | load distribution | adhesive sheet joints | brittle adhesive layer | elastic-plastic adhesive layer | peeling | geometric parameters | overlapping | overlap length | joining part elongation | stiffness | adhesive strength | joining part thickness | strength of joint parts | ageing | stress | humidity | alloy 6060 - T6 | fatigue strength | deformation behaviour | repeated stress | number of cycles | adhesive layers | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Geometría Gráfica Informática en Arquitectura II Geometría Gráfica Informática en Arquitectura II

Description

La asignatura trata de la profundización en el estudio geométrico con medios informáticos del hecho arquitectónico, considerado globalmente desde su complejidad espacial, compositiva, constructiva y estructural. La asignatura trata de la profundización en el estudio geométrico con medios informáticos del hecho arquitectónico, considerado globalmente desde su complejidad espacial, compositiva, constructiva y estructural.

Subjects

Bóveda | Bóveda | Patio de los Reyes | Patio de los Reyes | Expresión Gráfica en la Ingeniería | Expresión Gráfica en la Ingeniería | Módulo | Módulo | 3D network | 3D network | Andrea Palladio | Andrea Palladio | Modelado | Modelado | Extrusión | Extrusión | Construcciones Arquitectónicas | Construcciones Arquitectónicas | Dome | Dome | Tracery | Tracery | Rothwell – Northamptonshire | Rothwell – Northamptonshire | Los Manantiales | Los Manantiales | Dibujo | Dibujo | Paraboloid | Paraboloid | Graphic | Graphic | Solid | Solid | Dibujo 3D | Dibujo 3D | Arquitecto | Arquitecto | Architect | Architect | Hiperboloides | Hiperboloides | geodesic dome | geodesic dome | Render | Render | Malla | Malla | Computing | Computing | Catedral de León | Catedral de León | Surface | Surface | Historia del Arte | Historia del Arte | Red 3D | Red 3D | Gráfica | Gráfica | Geométrico | Geométrico | Spatial | Spatial | Red | Red | 3D | 3D | Form | Form | Hiperbólicos | Hiperbólicos | Ordenador | Ordenador | Ismael Garcia Rios | Ismael Garcia Rios | Booleana | Booleana | Paraboloides | Paraboloides | Axonometría | Axonometría | Revolve | Revolve | NURBS | NURBS | Félix Candela | Félix Candela | Rascacielos | Rascacielos | Expresión Gráfica Arquitectónica | Expresión Gráfica Arquitectónica | Architecture | Architecture | Minerva Médica | Minerva Médica | Bars | Bars | Barajas | Barajas | Computer | Computer | Skycraper | Skycraper | Superficie cuádrica | Superficie cuádrica | Arquitectura | Arquitectura | Autocad | Autocad | San Vicente de Coyoacán | San Vicente de Coyoacán | Rhinoceros | Rhinoceros | El Escorial | El Escorial | MicroStation | MicroStation | Composición Arquitectónica | Composición Arquitectónica | Modelling | Modelling | quadric surface | quadric surface | Mesh | Mesh | joints | joints | Superficie | Superficie | Nudos | Nudos | Proyectos Arquitectónicos | Proyectos Arquitectónicos | Parabólicos | Parabólicos | Geometry | Geometry | Estructura parabólica | Estructura parabólica | Carmen Garcia Reig | Carmen Garcia Reig | Ventana Gótica | Ventana Gótica | Expression | Expression | Tunnel vault | Tunnel vault | Red espacial | Red espacial | Geometría | Geometría | Sólido | Sólido | Perspectiva | Perspectiva | Church | Church | Cathedral | Cathedral | Minerva Medica Temple | Minerva Medica Temple | Hyperbolic | Hyperbolic | Bóveda de arista | Bóveda de arista | Revolución | Revolución | Cúpula | Cúpula | Estructura | Estructura | Expresión | Expresión | Computer aided design | Computer aided design | Informática | Informática | Rose window | Rose window | Geometric | Geometric | CAD | CAD | Formas | Formas | Infografía | Infografía | Kenilworth Castle | Kenilworth Castle | Plane | Plane | Architectural | Architectural | Barras | Barras | Plano | Plano | Structure | Structure | Architectural drawing | Architectural drawing | Arquitectónica | Arquitectónica | T4 | T4 | Cúpula geodésica | Cúpula geodésica | Ribbed vault | Ribbed vault | Tracería | Tracería | Vault | Vault | Module | Module | Extrude | Extrude | Rosetón | Rosetón | Boolean | Boolean | Hyperboloid | Hyperboloid | Hypar | Hypar

License

Copyright 2009, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.upm.es/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4104: Application Characteristics

Description

This lecture describes the parameters governing performance of rivet and clinch joints. General mechanical engineering background and familiarity with the subject matter covered in TALAT This lectures 4101- 4103 is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | design | riveting | edges | rivet diameters | riveted joint | corrosion prevention | composite joints | clinching tool | strength | operational life | material surface | shear-tensile testing | dynamic reversed loading | geometry | quasi-statically loaded | multiple-point joints | fatigue tests | impact testing | flanged double-c-channels | cost comparison | steel | sheets | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4702: Factors Influencing the Strength of Adhesive Joints

Description

This lecture describes the factors governing the strength of adhesive joints in order to appreciate these factors for the design of adhesively bonded joints, i.e. geometry of joint, stiffness and strength of the adjoining parts, stress distribution in the adhesive layer as well as the effects of humidity and ageing. General background in production engineering and material science, some knowledge of mechanics and polymer science is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | adhesive bonding | strength | design | stress distributions | lap joints | load distribution | adhesive sheet joints | brittle adhesive layer | elastic-plastic adhesive layer | peeling | geometric parameters | overlapping | overlap length | joining part elongation | stiffness | adhesive strength | joining part thickness | strength of joint parts | ageing | stress | humidity | alloy 6060 - t6 | fatigue strength | deformation behaviour | repeated stress | number of cycles | adhesive layers | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Confiscated illegal whiskey at a juke joint in Tallahassee Confiscated illegal whiskey at a juke joint in Tallahassee

Description

Subjects

bars | bars | florida | florida | whiskey | whiskey | tallahassee | tallahassee | jukejoints | jukejoints | policeraids | policeraids

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2104.01: Case Study on Glass Roof

Description

This lecture provides the teacher and students with a basis to develop sound and appropriate glass and aluminium roof designs; it explains the principles behind good design. After working through the course, the students will be in a position to design a glass roof which meets the requirements of local building regulations, and which is suited to the national traditions of the destination markets. This includes the collection of data on the local climate, because the product needs to withstand the climatic conditions in the different regions of the market. Safety and functionality are also important parameters of the finished product. Basic design engineering background, basic knowledge of corrosion effects, and some familiarity with TALAT lecture series 2100, 2200 and 5104 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | effects of climate | driving rain | wind stresses | snow loads | overheating | drainage | joints | cross member intersection | transitional details | ventilation | cleaning | condensation | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2406: Annex 1

Description

Fatigue and Fracture in Aluminium Structures. Proposal for a National Application Document (Updated from the TAS project). Contains tables.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | fatigue | transverse weld toe | members with welded attachments | longitudinal welds | welded joints between members | crossing welds | built-up beams | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2406: Annex 2

Description

Fatigue and Fracture in Aluminium Structures. Proposal for a National Application Document (Updated from the TAS project). Contains tables and figures.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | fatigue | transverse weld toe | members with welded attachments | longitudinal welds | welded joints between members | crossing welds | built-up beams | Ds | number of cycles | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4102: Clinching

Description

This lecture describes the detailed processes of single-step and multiple-step clinching; it shows the differences of the various clinching methods concerning the amount of shearing; it illustrates the major differences in mechanical properties of clinch joints compared with resistance spot welds. General mechanical engineering background and familiarity with the subject matter covered in TALAT This lecture 4101 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | clinching | local incision | classification | tools | single-step clinching | two-step clinching | multi-step clinching | geometry | spot welded joints | properties | die with movable parts | die without movable parts | flat clinch element | formed parts | holding systems | stripping systems | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4204: Design Aspects

Description

This lecture describes the effects of welding on the materials' strength characteristic. Basic knowledge in metallurgy of aluminium is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | joining | fastening | mechanical | arc welding | material characteristics | heat-affected zone | AlMg4 | 5Mn | strength | ageing | welded joints | productivity | shielding gases | cost | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4205: Testing Methods for Welded Joints

Description

This lecture gives information about the relevant non-destructive and destructive testing methods for aluminium welded joints. Background in production welding and quality assurance is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | arc welding | testing methods | welded joints | non-destructive testing | NDT | X-ray catalogue | destructive testing | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4300: Beam Welding Processes of Aluminium

Description

This lecture gives a brief introduction to beam welding and cutting techniques of aluminium; it describes the process principle of electron and laser beam welding and cutting of aluminium; it gives some information about the choice of welding and cutting parameters; it also gives information about the weldability of aluminium alloys with electron beam welding. General mechanical engineering background and basic knowledge of electron and laser beam physics is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | beam welding | electron beam welding | deep welding process | butt joints | electron beam weldability | rate of vaporisation | 7050 alloy | AlZnMgCu | tensile strength | solid-state laser | laser welding | laser gas-jet cutting | laser cutting diagram | laser beam cutting | plasma cutting | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4400: Introduction to Friction, Explosive and Ultrasonic Welding Processes of Aluminium

Description

This lecture gives a brief introduction to friction, explosive and ultrasonic welding techniques of aluminium; it describes the possibilities and results of joining aluminium to different metals, e.g. stainless steel. General mechanical engineering background and basic knowledge in aluminium metallurgy is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | friction welding | explosive welding | ultrasonic welding | feasibility | tensile strength | aluminium-steel joints | hardness curves | Al-Cr-Ni-steel joint | friction welding parameters | macrostructure | joint forms | material combinations | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata