Searching for life cycle analysis : 13 results found | RSS Feed for this search
Description
This course covers the use of ecological and thermodynamic principles to examine interactions between humans and the natural environment. Topics include conservation and constitutive laws, box models, feedback, thermodynamic concepts, energy in natural and engineered systems, basic transport concepts, life cycle analysis and related economic methods.Topics such as renewable energy, sustainable agriculture, green buildings, and mitigation of climate change are illustrated with quantitative case studies. Case studies are team-oriented and may include numerical simulations and design exercises. Some programming experience is desirable but not a prerequisite. Instruction and practice in oral and written communication are provided. This course covers the use of ecological and thermodynamic principles to examine interactions between humans and the natural environment. Topics include conservation and constitutive laws, box models, feedback, thermodynamic concepts, energy in natural and engineered systems, basic transport concepts, life cycle analysis and related economic methods.Topics such as renewable energy, sustainable agriculture, green buildings, and mitigation of climate change are illustrated with quantitative case studies. Case studies are team-oriented and may include numerical simulations and design exercises. Some programming experience is desirable but not a prerequisite. Instruction and practice in oral and written communication are provided.Subjects
systems | systems | conservation laws | conservation laws | constitutive laws | constitutive laws | box models | box models | mass conservation | mass conservation | perturbation methods | perturbation methods | thermodymanics | thermodymanics | heat transfer | heat transfer | enthalpy | enthalpy | entropy | entropy | multiphase systems | multiphase systems | mass and energy balances | mass and energy balances | energy supply options | energy supply options | economic value | economic value | natural resources | natural resources | multiobjective analysis | multiobjective analysis | life cycle analysis | life cycle analysis | mass and energy transport | mass and energy transport | green buildings | green buildings | transportation modeling | transportation modeling | renewable energy | renewable energy | climate modeling | climate modelingLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilizationSubjects
Thermodynamics | Thermodynamics | chemistry | chemistry | flow | flow | transport processes | transport processes | energy systems | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | and photoelectric processes | power and transportation systems | power and transportation systems | efficiency | efficiency | environmental impact | environmental impact | performance | performance | fossil fuels | fossil fuels | hydrogen resources | hydrogen resources | nuclear resources | nuclear resources | renewable resources | renewable resources | fuel reforming | fuel reforming | hydrogen and synthetic fuel production | hydrogen and synthetic fuel production | fuel cells and batteries | fuel cells and batteries | combustion | combustion | hybrids | hybrids | catalysis | catalysis | supercritical and combined cycles | supercritical and combined cycles | photovoltaics | photovoltaics | energy storage and transmission | energy storage and transmission | Optimal source utilization | Optimal source utilization | fuel-life cycle analysis. | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | thermochemical | electrochemical | and photoelectric processes | 2.62 | 2.62 | 10.392 | 10.392 | 22.40 | 22.40License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course provides a review of physical, chemical, ecological, and economic principles used to examine interactions between humans and the natural environment. Mass balance concepts are applied to ecology, chemical kinetics, hydrology, and transportation; energy balance concepts are applied to building design, ecology, and climate change; and economic and life cycle concepts are applied to resource evaluation and engineering design. Numerical models are used to integrate concepts and to assess environmental impacts of human activities. Problem sets involve development of MATLAB® models for particular engineering applications. Some experience with computer programming is helpful but not essential. This course provides a review of physical, chemical, ecological, and economic principles used to examine interactions between humans and the natural environment. Mass balance concepts are applied to ecology, chemical kinetics, hydrology, and transportation; energy balance concepts are applied to building design, ecology, and climate change; and economic and life cycle concepts are applied to resource evaluation and engineering design. Numerical models are used to integrate concepts and to assess environmental impacts of human activities. Problem sets involve development of MATLAB® models for particular engineering applications. Some experience with computer programming is helpful but not essential.Subjects
modeling | modeling | matlab | matlab | human impact on environment | human impact on environment | economics | economics | natural resources | natural resources | assessment of model predictions | assessment of model predictions | mass balance | mass balance | energy balance | energy balance | mass transport | mass transport | energy transport | energy transport | resource economics | resource economics | life cycle analysis | life cycle analysis | chemical kinetics | chemical kinetics | population modeling | population modeling | pesticides | pesticides | nutrients | nutrients | building energy | building energy | air quality | air quality | crop irrigation | crop irrigation | groundwater | groundwaterLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataESD.S43 Green Supply Chain Management (MIT) ESD.S43 Green Supply Chain Management (MIT)
Description
Includes audio/video content: AV selected lectures. The half-semester graduate course in Green Supply Chain Management will focus on the fundamental strategies, tools and techniques required to analyze and design environmentally sustainable supply chain systems. Topics covered include: Closed-loop supply chains, reverse logistics systems, carbon footprinting, life-cycle analysis and supply chain sustainability strategy.Class sessions will combine presentations, case discussions and guest speakers. All students will work on a course-long team project that critically evaluates the environmental supply chain strategy of an industry or a publicly traded company. Grades will be based on class participation, case study assignments and the team project. Includes audio/video content: AV selected lectures. The half-semester graduate course in Green Supply Chain Management will focus on the fundamental strategies, tools and techniques required to analyze and design environmentally sustainable supply chain systems. Topics covered include: Closed-loop supply chains, reverse logistics systems, carbon footprinting, life-cycle analysis and supply chain sustainability strategy.Class sessions will combine presentations, case discussions and guest speakers. All students will work on a course-long team project that critically evaluates the environmental supply chain strategy of an industry or a publicly traded company. Grades will be based on class participation, case study assignments and the team project.Subjects
supply chain management | supply chain management | Carbon footprint | Carbon footprint | life cycle analysis | life cycle analysis | environmental policy | environmental policy | environmentally sustainable supply chain systems | environmentally sustainable supply chain systems | reverse logistics systems | reverse logistics systems | supply chain sustainability strategy | supply chain sustainability strategy | multi-stakeholder engagements | multi-stakeholder engagements | green supply chain strategy | green supply chain strategy | Carbon Disclosure Project | Carbon Disclosure ProjectLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataTALAT Lecture 2109: LCA - From Environmental Consciousness to Design for the Future
Description
This lecture introduces the currently most widely accepted methodology for life cycle analysis and shows possible effects on designing products.Subjects
aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | LCA | impact assessment | methodology | life cycle analysis | corematerials | ukoerLicense
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://core.materials.ac.uk/rss/talat.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataTALAT Lecture 2110.01: Automobile brake rotor - LCA in product design
Description
This lecture imparts knowledge about ?production and casting of SiC-particle reinforced aluminium metal matrix composite - PMMC (SiCAl7SiMg); use of Life Cycle Analysis. It provides insight to how to redesign a product using life cycle thinking and LCA to minimize the ecological side effects; the importance of having a thoroughly knowledge about the product's life and its environmental impact. Some knowledge of the concept of the product information structure - "the chromosomes" and familiarity with LCA methodology is assumed.Subjects
aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | automobile brake system | topological structure | wheel design | brake rotor | calliper | specifications | PMMC | environmental performance | particle reinforced aluminium | production | casting | life cycle analysis | energy consumption | material consumption | safety | pollution | corematerials | ukoerLicense
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://core.materials.ac.uk/rss/talat.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata2.60 Fundamentals of Advanced Energy Conversion (MIT)
Description
This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilizationSubjects
Thermodynamics | chemistry | flow | transport processes | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | power and transportation systems | efficiency | environmental impact | performance | fossil fuels | hydrogen resources | nuclear resources | renewable resources | fuel reforming | hydrogen and synthetic fuel production | fuel cells and batteries | combustion | hybrids | catalysis | supercritical and combined cycles | photovoltaics | energy storage and transmission | Optimal source utilization | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | 2.62 | 10.392 | 22.40License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataTALAT Lecture 2109: LCA - From Environmental Consciousness to Design for the Future
Description
This lecture introduces the currently most widely accepted methodology for life cycle analysis and shows possible effects on designing products.Subjects
aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | product | lca | impact assessment | methodology | life cycle analysis | corematerials | ukoer | Engineering | H000License
Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataTALAT Lecture 2110.01: Automobile brake rotor - LCA in product design
Description
SiMg); use of Life Cycle Analysis. It provides insight to how to redesign a product using life cycle thinking and LCA to minimize the ecological side effects; the importance of having a thoroughly knowledge about the product's life and its environmental impact. Some knowledge of the concept of the product information structure - "the chromosomes" and familiarity with LCA methodology is assumed.Subjects
aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | product | automobile brake system | topological structure | wheel design | brake rotor | calliper | specifications | pmmc | environmental performance | particle reinforced aluminium | production | casting | life cycle analysis | energy consumption | material consumption | safety | pollution | corematerials | ukoer | Engineering | H000License
Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.020 Ecology II: Engineering for Sustainability (MIT)
Description
This course covers the use of ecological and thermodynamic principles to examine interactions between humans and the natural environment. Topics include conservation and constitutive laws, box models, feedback, thermodynamic concepts, energy in natural and engineered systems, basic transport concepts, life cycle analysis and related economic methods.Topics such as renewable energy, sustainable agriculture, green buildings, and mitigation of climate change are illustrated with quantitative case studies. Case studies are team-oriented and may include numerical simulations and design exercises. Some programming experience is desirable but not a prerequisite. Instruction and practice in oral and written communication are provided.Subjects
systems | conservation laws | constitutive laws | box models | mass conservation | perturbation methods | thermodymanics | heat transfer | enthalpy | entropy | multiphase systems | mass and energy balances | energy supply options | economic value | natural resources | multiobjective analysis | life cycle analysis | mass and energy transport | green buildings | transportation modeling | renewable energy | climate modelingLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.020 Ecology II: Engineering for Sustainability (MIT)
Description
This course provides a review of physical, chemical, ecological, and economic principles used to examine interactions between humans and the natural environment. Mass balance concepts are applied to ecology, chemical kinetics, hydrology, and transportation; energy balance concepts are applied to building design, ecology, and climate change; and economic and life cycle concepts are applied to resource evaluation and engineering design. Numerical models are used to integrate concepts and to assess environmental impacts of human activities. Problem sets involve development of MATLAB® models for particular engineering applications. Some experience with computer programming is helpful but not essential.Subjects
modeling | matlab | human impact on environment | economics | natural resources | assessment of model predictions | mass balance | energy balance | mass transport | energy transport | resource economics | life cycle analysis | chemical kinetics | population modeling | pesticides | nutrients | building energy | air quality | crop irrigation | groundwaterLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata2.60 Fundamentals of Advanced Energy Conversion (MIT)
Description
This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilizationSubjects
Thermodynamics | chemistry | flow | transport processes | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | power and transportation systems | efficiency | environmental impact | performance | fossil fuels | hydrogen resources | nuclear resources | renewable resources | fuel reforming | hydrogen and synthetic fuel production | fuel cells and batteries | combustion | hybrids | catalysis | supercritical and combined cycles | photovoltaics | energy storage and transmission | Optimal source utilization | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | 2.62 | 10.392 | 22.40License
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataESD.S43 Green Supply Chain Management (MIT)
Description
The half-semester graduate course in Green Supply Chain Management will focus on the fundamental strategies, tools and techniques required to analyze and design environmentally sustainable supply chain systems. Topics covered include: Closed-loop supply chains, reverse logistics systems, carbon footprinting, life-cycle analysis and supply chain sustainability strategy.Class sessions will combine presentations, case discussions and guest speakers. All students will work on a course-long team project that critically evaluates the environmental supply chain strategy of an industry or a publicly traded company. Grades will be based on class participation, case study assignments and the team project.Subjects
supply chain management | Carbon footprint | life cycle analysis | environmental policy | environmentally sustainable supply chain systems | reverse logistics systems | supply chain sustainability strategy | multi-stakeholder engagements | green supply chain strategy | Carbon Disclosure ProjectLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata