Searching for linear equations : 30 results found | RSS Feed for this search

Description

This course consists of a introduction to linear algebra. This course consists of a introduction to linear algebra.

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course introduces students to MATLAB®. Numerical methods include number representation and errors, interpolation, differentiation, integration, systems of linear equations, and Fourier interpolation and transforms. Students will study partial and ordinary differential equations as well as elliptic and parabolic differential equations, and solutions by numerical integration, finite difference methods, finite element methods, boundary element methods, and panel methods. This course introduces students to MATLAB®. Numerical methods include number representation and errors, interpolation, differentiation, integration, systems of linear equations, and Fourier interpolation and transforms. Students will study partial and ordinary differential equations as well as elliptic and parabolic differential equations, and solutions by numerical integration, finite difference methods, finite element methods, boundary element methods, and panel methods.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

An introduction to the formulation, methodology, and techniques for numerical solution of engineering problems. Fundamental principles of digital computing and the implications for algorithm accuracy and stability. Error propagation and stability. The solution of systems of linear equations, including direct and iterative techniques. Roots of equations and systems of equations. Numerical interpolation, differentiation and integration. Fundamentals of finite-difference solutions to ordinary differential equations. Error and convergence analysis. Subject taught first half of term.Technical RequirementsMATLAB&#174; software&#160;is required to run the .m files found on this course site.MATLAB&#174; is a trademark of The MathWorks, Inc. An introduction to the formulation, methodology, and techniques for numerical solution of engineering problems. Fundamental principles of digital computing and the implications for algorithm accuracy and stability. Error propagation and stability. The solution of systems of linear equations, including direct and iterative techniques. Roots of equations and systems of equations. Numerical interpolation, differentiation and integration. Fundamentals of finite-difference solutions to ordinary differential equations. Error and convergence analysis. Subject taught first half of term.Technical RequirementsMATLAB&#174; software&#160;is required to run the .m files found on this course site.MATLAB&#174; is a trademark of The MathWorks, Inc.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course is an introduction to numerical methods: interpolation, differentiation, integration, and systems of linear equations. It covers the solution of differential equations by numerical integration, as well as partial differential equations of inviscid hydrodynamics: finite difference methods, boundary integral equation panel methods. Also addressed are introductory numerical lifting surface computations, fast Fourier transforms, the numerical representation of deterministic and random sea waves, as well as integral boundary layer equations and numerical solutions.Technical RequirementMATLAB&reg; software is required to run the .m files found on this course site. The .FIN and .OUT are simply data offest tables.&nbsp;They can be viewed with any text reader. RealOne&#8482; This course is an introduction to numerical methods: interpolation, differentiation, integration, and systems of linear equations. It covers the solution of differential equations by numerical integration, as well as partial differential equations of inviscid hydrodynamics: finite difference methods, boundary integral equation panel methods. Also addressed are introductory numerical lifting surface computations, fast Fourier transforms, the numerical representation of deterministic and random sea waves, as well as integral boundary layer equations and numerical solutions.Technical RequirementMATLAB&reg; software is required to run the .m files found on this course site. The .FIN and .OUT are simply data offest tables.&nbsp;They can be viewed with any text reader. RealOne&#8482;

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

Includes audio/video content: AV faculty introductions. This course is an introduction to numerical methods: interpolation, differentiation, integration, and systems of linear equations. It covers the solution of differential equations by numerical integration, as well as partial differential equations of inviscid hydrodynamics: finite difference methods, boundary integral equation panel methods. Also addressed are introductory numerical lifting surface computations, fast Fourier transforms, the numerical representation of deterministic and random sea waves, as well as integral boundary layer equations and numerical solutions. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.024. In 2005, ocean engineering subjects became part of Course 2 (Department Includes audio/video content: AV faculty introductions. This course is an introduction to numerical methods: interpolation, differentiation, integration, and systems of linear equations. It covers the solution of differential equations by numerical integration, as well as partial differential equations of inviscid hydrodynamics: finite difference methods, boundary integral equation panel methods. Also addressed are introductory numerical lifting surface computations, fast Fourier transforms, the numerical representation of deterministic and random sea waves, as well as integral boundary layer equations and numerical solutions. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.024. In 2005, ocean engineering subjects became part of Course 2 (Department

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course is offered to undergraduates and introduces students to the formulation, methodology, and techniques for numerical solution of engineering problems. Topics covered include: fundamental principles of digital computing and the implications for algorithm accuracy and stability, error propagation and stability, the solution of systems of linear equations, including direct and iterative techniques, roots of equations and systems of equations, numerical interpolation, differentiation and integration, fundamentals of finite-difference solutions to ordinary differential equations, and error and convergence analysis. The subject is taught the first half of the term. This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.002J. In 2005, ocean engineering This course is offered to undergraduates and introduces students to the formulation, methodology, and techniques for numerical solution of engineering problems. Topics covered include: fundamental principles of digital computing and the implications for algorithm accuracy and stability, error propagation and stability, the solution of systems of linear equations, including direct and iterative techniques, roots of equations and systems of equations, numerical interpolation, differentiation and integration, fundamentals of finite-difference solutions to ordinary differential equations, and error and convergence analysis. The subject is taught the first half of the term. This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.002J. In 2005, ocean engineering

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

The main goal of this course is to give the students a solid foundation in the theory of elliptic and parabolic linear partial differential equations. It is the second semester of a two-semester, graduate-level sequence on Differential Analysis. The main goal of this course is to give the students a solid foundation in the theory of elliptic and parabolic linear partial differential equations. It is the second semester of a two-semester, graduate-level sequence on Differential Analysis.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course covers the same material as 18.03 with more emphasis on theory. Topics include first order equations, separation, initial value problems, systems, linear equations, independence of solutions, undetermined coefficients, and singular points and periodic orbits for planar systems. This course covers the same material as 18.03 with more emphasis on theory. Topics include first order equations, separation, initial value problems, systems, linear equations, independence of solutions, undetermined coefficients, and singular points and periodic orbits for planar systems.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course offers a rigorous treatment of linear algebra, including vector spaces, systems of linear equations, bases, linear independence, matrices, determinants, eigenvalues, inner products, quadratic forms, and canonical forms of matrices. Compared with Linear Algebra (18.06), more emphasis is placed on theory and proofs. This course offers a rigorous treatment of linear algebra, including vector spaces, systems of linear equations, bases, linear independence, matrices, determinants, eigenvalues, inner products, quadratic forms, and canonical forms of matrices. Compared with Linear Algebra (18.06), more emphasis is placed on theory and proofs.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course offers a rigorous treatment of linear algebra, including vector spaces, systems of linear equations, bases, linear independence, matrices, determinants, eigenvalues, inner products, quadratic forms, and canonical forms of matrices. Compared with 18.06 Linear Algebra, more emphasis is placed on theory and proofs. This course offers a rigorous treatment of linear algebra, including vector spaces, systems of linear equations, bases, linear independence, matrices, determinants, eigenvalues, inner products, quadratic forms, and canonical forms of matrices. Compared with 18.06 Linear Algebra, more emphasis is placed on theory and proofs.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course offers a rigorous treatment of linear algebra, including vector spaces, systems of linear equations, bases, linear independence, matrices, determinants, eigenvalues, inner products, quadratic forms, and canonical forms of matrices. Compared with Linear Algebra (18.06), more emphasis is placed on theory and proofs.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course is offered to undergraduates and introduces students to the formulation, methodology, and techniques for numerical solution of engineering problems. Topics covered include: fundamental principles of digital computing and the implications for algorithm accuracy and stability, error propagation and stability, the solution of systems of linear equations, including direct and iterative techniques, roots of equations and systems of equations, numerical interpolation, differentiation and integration, fundamentals of finite-difference solutions to ordinary differential equations, and error and convergence analysis. The subject is taught the first half of the term. This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.002J. In 2005, ocean engineering

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

Part of a series of worksheets covering Mathematical Case Studies for Economists from Nottingham Trent University. They are downloadable in Word format with embedded links. They can be adapted, printed and/or put in a Virtual Learning Environment. A booklet giving guideline answers for the task questions is available on request from the Economics Network.

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This Guide focuses on ways to help students grasp the meaning, significance and practical application of the equation of a straight line. Students will have opportunities to achieve a number of learning outcomes. These METAL (Mathematics for Economics: enhancing Teaching and Learning) teaching and learning guides are written primarily for lecturers and tutors, and present innovative and interactive approaches to teaching mathematical concepts to economics students. The guides include: Presentation of mathematics concepts, Top tips, Teaching and learning suggestions, Seminar activities.

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This Guide extends the analysis of linear equations to settings in which there is more than one equation, and where a solution to the system of equations is required. These METAL (Mathematics for Economics: enhancing Teaching and Learning) teaching and learning guides are written primarily for lecturers and tutors, and present innovative and interactive approaches to teaching mathematical concepts to economics students. The guides include: Presentation of mathematics concepts, Top tips, Teaching and learning suggestions, Seminar activities.

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This guide attempts to promote the use of non-linear equations and functions with clear statements of why they matter within the study of economics. Key to this is the use of data and application to economic problems and use of economic principles to guide the mathematics. These METAL (Mathematics for Economics: enhancing Teaching and Learning) teaching and learning guides are written primarily for lecturers and tutors, and present innovative and interactive approaches to teaching mathematical concepts to economics students. The guides include: Presentation of mathematics concepts, Top tips, Teaching and learning suggestions, Seminar activities.

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This film is a review of linear equations in order to find equilibrium quantities. (Duration 7 minutes 26 seconds). Part of a series of films from the METAL (Mathematics for Economics: enhancing Teaching and Learning) project that examines spending options in a number of contexts, and uses linear equations to explore constraints in markets. They are fundamental building blocks for a course of mathematics for economics. These video clips and animations can be viewed in isolation, or via the learning pathway links to related materials in a Question Bank.

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

A film about the effects on price and output of government subsidies in French and American wine production. (Duration 8 minutes 3 seconds). Part of a series of films from the METAL (Mathematics for Economics: enhancing Teaching and Learning) project that examines spending options in a number of contexts, and uses linear equations to explore constraints in markets. They are fundamental building blocks for a course of mathematics for economics. These video clips and animations can be viewed in isolation, or via the learning pathway links to related materials in a Question Bank.

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This film is a summary of the concept of solving linear equations. (Duration 33 seconds). Part of a series of films from the METAL (Mathematics for Economics: enhancing Teaching and Learning) project that examines spending options in a number of contexts, and uses linear equations to explore constraints in markets. They are fundamental building blocks for a course of mathematics for economics. These video clips and animations can be viewed in isolation, or via the learning pathway links to related materials in a Question Bank.

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

A film about how the decision to purchase a student rail card provides and illustration of the use of more than two linear equations. (Duration 9 minutes 29 seconds). Part of a series of films from the METAL (Mathematics for Economics: enhancing Teaching and Learning) project that examines spending options in a number of contexts, and uses linear equations to explore constraints in markets. They are fundamental building blocks for a course of mathematics for economics. These video clips and animations can be viewed in isolation, or via the learning pathway links to related materials in a Question Bank.

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course offers a rigorous treatment of linear algebra, including vector spaces, systems of linear equations, bases, linear independence, matrices, determinants, eigenvalues, inner products, quadratic forms, and canonical forms of matrices. Compared with Linear Algebra (18.06), more emphasis is placed on theory and proofs.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course introduces students to MATLAB®. Numerical methods include number representation and errors, interpolation, differentiation, integration, systems of linear equations, and Fourier interpolation and transforms. Students will study partial and ordinary differential equations as well as elliptic and parabolic differential equations, and solutions by numerical integration, finite difference methods, finite element methods, boundary element methods, and panel methods.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

An introduction to the formulation, methodology, and techniques for numerical solution of engineering problems. Fundamental principles of digital computing and the implications for algorithm accuracy and stability. Error propagation and stability. The solution of systems of linear equations, including direct and iterative techniques. Roots of equations and systems of equations. Numerical interpolation, differentiation and integration. Fundamentals of finite-difference solutions to ordinary differential equations. Error and convergence analysis. Subject taught first half of term.Technical RequirementsMATLAB&#174; software&#160;is required to run the .m files found on this course site.MATLAB&#174; is a trademark of The MathWorks, Inc.

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course is an introduction to numerical methods: interpolation, differentiation, integration, and systems of linear equations. It covers the solution of differential equations by numerical integration, as well as partial differential equations of inviscid hydrodynamics: finite difference methods, boundary integral equation panel methods. Also addressed are introductory numerical lifting surface computations, fast Fourier transforms, the numerical representation of deterministic and random sea waves, as well as integral boundary layer equations and numerical solutions.Technical RequirementMATLAB&reg; software is required to run the .m files found on this course site. The .FIN and .OUT are simply data offest tables.&nbsp;They can be viewed with any text reader. RealOne&#8482;

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

Click to get HTML | Click to get attribution | Click to get URL

Description

This course is offered to undergraduates and introduces students to the formulation, methodology, and techniques for numerical solution of engineering problems. Topics covered include: fundamental principles of digital computing and the implications for algorithm accuracy and stability, error propagation and stability, the solution of systems of linear equations, including direct and iterative techniques, roots of equations and systems of equations, numerical interpolation, differentiation and integration, fundamentals of finite-difference solutions to ordinary differential equations, and error and convergence analysis. The subject is taught the first half of the term. This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.002J. In 2005, ocean engineering

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from