Searching for linear regression : 110 results found | RSS Feed for this search
14.382 Econometrics I (MIT) 14.382 Econometrics I (MIT)
Description
This course focuses on the specification and estimation of the linear regression model. The course departs from the standard Gauss-Markov assumptions to include heteroskedasticity, serial correlation, and errors in variables. Advanced topics include generalized least squares, instrumental variables, nonlinear regression, and limited dependent variable models. Economic applications are discussed throughout the course. This course focuses on the specification and estimation of the linear regression model. The course departs from the standard Gauss-Markov assumptions to include heteroskedasticity, serial correlation, and errors in variables. Advanced topics include generalized least squares, instrumental variables, nonlinear regression, and limited dependent variable models. Economic applications are discussed throughout the course.Subjects
Economics | Economics | econometrics | econometrics | linear regression model | linear regression model | Gauss-Markov | Gauss-Markov | heteroskedasticity | heteroskedasticity | serial correlation | serial correlation | errors | errors | variables | variables | generalized least squares | generalized least squares | instrumental variables | instrumental variables | nonlinear regression | nonlinear regression | limited dependent variable models | limited dependent variable modelsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata15.075 Applied Statistics (MIT) 15.075 Applied Statistics (MIT)
Description
This course is an introduction to applied statistics and data analysis. Topics include collecting and exploring data, basic inference, simple and multiple linear regression, analysis of variance, nonparametric methods, and statistical computing. It is not a course in mathematical statistics, but provides a balance between statistical theory and application. Prerequisites are calculus, probability, and linear algebra. We would like to acknowledge the contributions that Prof. Roy Welsch (MIT), Prof. Gordon Kaufman (MIT), Prof. Jacqueline Telford (Johns Hopkins University), and Prof. Ramón León (University of Tennessee) have made to the course material. This course is an introduction to applied statistics and data analysis. Topics include collecting and exploring data, basic inference, simple and multiple linear regression, analysis of variance, nonparametric methods, and statistical computing. It is not a course in mathematical statistics, but provides a balance between statistical theory and application. Prerequisites are calculus, probability, and linear algebra. We would like to acknowledge the contributions that Prof. Roy Welsch (MIT), Prof. Gordon Kaufman (MIT), Prof. Jacqueline Telford (Johns Hopkins University), and Prof. Ramón León (University of Tennessee) have made to the course material.Subjects
data analysis | data analysis | multiple regression | multiple regression | analysis of variance | analysis of variance | multivariate analysis | multivariate analysis | data mining | data mining | probability | probability | collecting data | collecting data | sampling distributions | sampling distributions | inference | inference | linear regression | linear regression | ANOVA | ANOVA | nonparametric methods | nonparametric methods | polls | polls | surveys | surveys | statistics | statistics | management science | management science | finance | finance | statistical graphics | statistical graphics | estimation | estimation | hypothesis testing | hypothesis testing | logistic regression | logistic regression | contingency tables | contingency tables | forecasting | forecasting | factor analysis | factor analysisLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.010 Uncertainty in Engineering (MIT) 1.010 Uncertainty in Engineering (MIT)
Description
This undergraduate class serves as an introduction to probability and statistics, with emphasis on engineering applications. The first segment discusses events and their probability, Bayes' Theorem, discrete and continuous random variables and vectors, univariate and multivariate distributions, Bernoulli trials and Poisson point processes, and full-distribution uncertainty propagation and conditional analysis. The second segment deals with second-moment representation of uncertainty and second-moment uncertainty propagation and conditional analysis. The final segment covers random sampling, point and interval estimation, hypothesis testing, and linear regression. Many of the concepts covered in class are illustrated with real-world examples from various areas of engineering. This undergraduate class serves as an introduction to probability and statistics, with emphasis on engineering applications. The first segment discusses events and their probability, Bayes' Theorem, discrete and continuous random variables and vectors, univariate and multivariate distributions, Bernoulli trials and Poisson point processes, and full-distribution uncertainty propagation and conditional analysis. The second segment deals with second-moment representation of uncertainty and second-moment uncertainty propagation and conditional analysis. The final segment covers random sampling, point and interval estimation, hypothesis testing, and linear regression. Many of the concepts covered in class are illustrated with real-world examples from various areas of engineering.Subjects
statistics | statistics | decision analysis | decision analysis | random variables and vectors | random variables and vectors | uncertainty propagation | uncertainty propagation | conditional distributions | conditional distributions | second-moment analysis | second-moment analysis | system reliability | system reliability | Bayesian analysis and risk-based decision | Bayesian analysis and risk-based decision | estimation of distribution parameters | estimation of distribution parameters | hypothesis testing | hypothesis testing | simple and multiple linear regressions | simple and multiple linear regressions | Poisson and Markov processes | Poisson and Markov processesLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.010 Uncertainty in Engineering (MIT) 1.010 Uncertainty in Engineering (MIT)
Description
This course gives an introduction to probability and statistics, with emphasis on engineering applications. Course topics include events and their probability, the total probability and Bayes' theorems, discrete and continuous random variables and vectors, uncertainty propagation and conditional analysis. Second-moment representation of uncertainty, random sampling, estimation of distribution parameters (method of moments, maximum likelihood, Bayesian estimation), and simple and multiple linear regression. Concepts illustrated with examples from various areas of engineering and everyday life. This course gives an introduction to probability and statistics, with emphasis on engineering applications. Course topics include events and their probability, the total probability and Bayes' theorems, discrete and continuous random variables and vectors, uncertainty propagation and conditional analysis. Second-moment representation of uncertainty, random sampling, estimation of distribution parameters (method of moments, maximum likelihood, Bayesian estimation), and simple and multiple linear regression. Concepts illustrated with examples from various areas of engineering and everyday life.Subjects
fundamentals of probability | fundamentals of probability | random processes | random processes | statistics | statistics | decision analysis | decision analysis | random variables and vectors | random variables and vectors | uncertainty propagation | uncertainty propagation | conditional distributions | conditional distributions | second-moment analysis | second-moment analysis | system reliability | system reliability | Bayes theorem | Bayes theorem | total probability theorem | total probability theorem | Bayesian analysis and risk-based decision | Bayesian analysis and risk-based decision | estimation of distribution parameters | estimation of distribution parameters | hypothesis testing | hypothesis testing | simple and multiple linear regressions | simple and multiple linear regressions | Poisson and Markov processes | Poisson and Markov processesLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This class covers quantitative analysis of uncertainty and risk for engineering applications. Fundamentals of probability, random processes, statistics, and decision analysis are covered, along with random variables and vectors, uncertainty propagation, conditional distributions, and second-moment analysis. System reliability is introduced. Other topics covered include Bayesian analysis and risk-based decision, estimation of distribution parameters, hypothesis testing, simple and multiple linear regressions, and Poisson and Markov processes. There is an emphasis placed on real-world applications to engineering problems. This class covers quantitative analysis of uncertainty and risk for engineering applications. Fundamentals of probability, random processes, statistics, and decision analysis are covered, along with random variables and vectors, uncertainty propagation, conditional distributions, and second-moment analysis. System reliability is introduced. Other topics covered include Bayesian analysis and risk-based decision, estimation of distribution parameters, hypothesis testing, simple and multiple linear regressions, and Poisson and Markov processes. There is an emphasis placed on real-world applications to engineering problems.Subjects
fundamentals of probability | fundamentals of probability | random processes | random processes | statistics | statistics | decision analysis | decision analysis | random variables and vectors | random variables and vectors | uncertainty propagation | uncertainty propagation | conditional distributions | conditional distributions | second-moment analysis | second-moment analysis | system reliability | system reliability | Bayesian analysis and risk-based decision | Bayesian analysis and risk-based decision | estimation of distribution parameters | estimation of distribution parameters | hypothesis testing | hypothesis testing | simple and multiple linear regressions | simple and multiple linear regressions | Poisson and Markov processes | Poisson and Markov processesLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects
probability | probability | statistics | statistics | events | events | random variables | random variables | univariate distributions | univariate distributions | multivariate distributions | multivariate distributions | uncertainty propagation | uncertainty propagation | Bernoulli trials | Bernoulli trials | Poisson processed | Poisson processed | conditional probability | conditional probability | Bayes rule | Bayes rule | random sampling | random sampling | point estimation | point estimation | interval estimation | interval estimation | hypothesis testing | hypothesis testing | analysis of variance | analysis of variance | linear regression | linear regression | computational analysis | computational analysis | data analysis | data analysis | environmental engineering | environmental engineering | applications | applications | MATLAB | MATLAB | numerical modeling | numerical modeling | probabilistic concepts | probabilistic concepts | statistical methods | statistical methods | field data | field data | laboratory data | laboratory data | numerical techniques | numerical techniques | Monte Carlo simulation | Monte Carlo simulation | variability | variability | sampling | sampling | data sets | data sets | computer | computer | uncertainty | uncertainty | interpretation | interpretation | quantitative data | quantitative dataLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.867 Machine Learning (MIT) 6.867 Machine Learning (MIT)
Description
6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered. 6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered.Subjects
machine learning algorithms | machine learning algorithms | statistical inference | statistical inference | representation | representation | generalization | generalization | model selection | model selection | linear/additive models | linear/additive models | active learning | active learning | boosting | boosting | support vector machines | support vector machines | hidden Markov models | hidden Markov models | Bayesian networks | Bayesian networks | classification | classification | linear regression | linear regression | modern machine learning methods | modern machine learning methodsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course emphasizes statistics as a powerful tool for studying complex issues in behavioral and biological sciences, and explores the limitations of statistics as a method of inquiry. The course covers descriptive statistics, probability and random variables, inferential statistics, and basic issues in experimental design. Techniques introduced include confidence intervals, t-tests, F-tests, regression, and analysis of variance. Assignments include a project in data analysis. This course emphasizes statistics as a powerful tool for studying complex issues in behavioral and biological sciences, and explores the limitations of statistics as a method of inquiry. The course covers descriptive statistics, probability and random variables, inferential statistics, and basic issues in experimental design. Techniques introduced include confidence intervals, t-tests, F-tests, regression, and analysis of variance. Assignments include a project in data analysis.Subjects
statistics | statistics | standard deviation | standard deviation | ANOVA | ANOVA | variance | variance | chi squared | chi squared | mean | mean | median | median | spread | spread | graphs | graphs | histograms | histograms | binomial distribution | binomial distribution | random variables | random variables | sampling | sampling | experimental design | experimental design | probability | probability | confidence intervals | confidence intervals | error bars | error bars | best fit | best fit | hypothesis testing | hypothesis testing | linear regression | linear regression | regression | regression | correlation | correlation | categorical data | categorical dataLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-9.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata14.32 Econometrics (MIT) 14.32 Econometrics (MIT)
Description
Introduction to econometric models and techniques, simultaneous equations, program evaluation, emphasizing regression. Advanced topics include instrumental variables, panel data methods, measurement error, and limited dependent variable models. May not count toward HASS requirement. Introduction to econometric models and techniques, simultaneous equations, program evaluation, emphasizing regression. Advanced topics include instrumental variables, panel data methods, measurement error, and limited dependent variable models. May not count toward HASS requirement.Subjects
econometrics | econometrics | statistical methods | statistical methods | differences-in-differences | differences-in-differences | 2SLS | 2SLS | FGLS | FGLS | serial correlation | serial correlation | IV | IV | two-stage least squares | two-stage least squares | multivariate regression | multivariate regression | simultaneous equations | simultaneous equations | econometric models | econometric models | program evaluation | program evaluation | linear regression | linear regression | instrumental variables | instrumental variables | panel data methods | panel data methods | measurement error | measurement error | limited dependent variable models | limited dependent variable modelsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course is an introduction to statistical data analysis. Topics are chosen from applied probability, sampling, estimation, hypothesis testing, linear regression, analysis of variance, categorical data analysis, and nonparametric statistics. This course is an introduction to statistical data analysis. Topics are chosen from applied probability, sampling, estimation, hypothesis testing, linear regression, analysis of variance, categorical data analysis, and nonparametric statistics.Subjects
15.075 | 15.075 | ESD.07 | ESD.07 | statistics | statistics | data analysis | data analysis | multiple regression | multiple regression | analysis of variance | analysis of variance | multivariate analysis | multivariate analysis | data mining | data mining | probability | probability | collecting data | collecting data | sampling distributions | sampling distributions | inference | inference | linear regression | linear regression | ANOVA | ANOVA | chi-square test | chi-square testLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course explores the theory and practice of scientific modeling in the context of auditory and speech biophysics. Based on seminar-style discussions of the research literature, the class draws on examples from hearing and speech, and explores general, meta-theoretical issues that transcend the particular subject matter. Examples include: What is a model? What is the process of model building? What are the different approaches to modeling? What is the relationship between theory and experiment? How are models tested? What constitutes a good model? This course explores the theory and practice of scientific modeling in the context of auditory and speech biophysics. Based on seminar-style discussions of the research literature, the class draws on examples from hearing and speech, and explores general, meta-theoretical issues that transcend the particular subject matter. Examples include: What is a model? What is the process of model building? What are the different approaches to modeling? What is the relationship between theory and experiment? How are models tested? What constitutes a good model?Subjects
hearing | hearing | speech | speech | modeling biology | modeling biology | network model of the ear | network model of the ear | model building | model building | dimensional analysis and scaling | dimensional analysis and scaling | resampling | resampling | monte carlo | monte carlo | forward vs. inverse | forward vs. inverse | chaos | chaos | limits of prediction | limits of prediction | hodgkin | hodgkin | huxley | huxley | molecular mathematic biology | molecular mathematic biology | cochlear input impedance | cochlear input impedance | auditory network | auditory network | auditory morphology | auditory morphology | electric model of neural cell fiber | electric model of neural cell fiber | electric diagrams of neural cells | electric diagrams of neural cells | linear regression | linear regression | sensitivity analysis | sensitivity analysis | cochlea | cochlea | inner ear | inner ear | middle ear | middle ear | auditory cortex | auditory cortex | scientific literature | scientific literature | analysis | analysis | paper analysis | paper analysis | tent maps | tent maps | quadratic maps | quadratic mapsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-HST.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course focuses on the specification and estimation of the linear regression model. The course departs from the standard Gauss-Markov assumptions to include heteroskedasticity, serial correlation, and errors in variables. Advanced topics include generalized least squares, instrumental variables, nonlinear regression, and limited dependent variable models. Economic applications are discussed throughout the course.Subjects
Economics | econometrics | linear regression model | Gauss-Markov | heteroskedasticity | serial correlation | errors | variables | generalized least squares | instrumental variables | nonlinear regression | limited dependent variable modelsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
Includes audio/video content: AV selected lectures. This course provides an elementary introduction to probability and statistics with applications. Topics include: basic combinatorics, random variables, probability distributions, Bayesian inference, hypothesis testing, confidence intervals, and linear regression. The Spring 2014 version of this subject employed the residential MITx system, which enables on-campus subjects to provide MIT students with learning and assessment tools such as online problem sets, lecture videos, reading questions, pre-lecture questions, problem set assistance, tutorial videos, exam review content, and even online exams. Includes audio/video content: AV selected lectures. This course provides an elementary introduction to probability and statistics with applications. Topics include: basic combinatorics, random variables, probability distributions, Bayesian inference, hypothesis testing, confidence intervals, and linear regression. The Spring 2014 version of this subject employed the residential MITx system, which enables on-campus subjects to provide MIT students with learning and assessment tools such as online problem sets, lecture videos, reading questions, pre-lecture questions, problem set assistance, tutorial videos, exam review content, and even online exams.Subjects
probability | probability | statistics | statistics | models | models | combinatorics | combinatorics | expectation | expectation | variance | variance | random variable | random variable | discrete probability distribution | discrete probability distribution | continuous probability distribution | continuous probability distribution | Bayes | Bayes | distribution | distribution | statistical estimation | statistical estimation | statistical testing | statistical testing | confidence interval | confidence interval | linear regression | linear regression | normal | normal | significance testing | significance testing | bootstrapping | bootstrappingLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course provides an elementary introduction to probability and statistics with applications. Topics include: basic probability models; combinatorics; random variables; discrete and continuous probability distributions; statistical estimation and testing; confidence intervals; and an introduction to linear regression. This course provides an elementary introduction to probability and statistics with applications. Topics include: basic probability models; combinatorics; random variables; discrete and continuous probability distributions; statistical estimation and testing; confidence intervals; and an introduction to linear regression.Subjects
probability models | probability models | combinatorics | combinatorics | random variables | random variables | discrete probability distributions | discrete probability distributions | continuous probability distributions | continuous probability distributions | statistical estimation | statistical estimation | statistical testing | statistical testing | confidence intervals | confidence intervals | linear regression | linear regressionLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataQuantitative Methods: Modelling Data
Description
Quantitative Methods: Modelling Data. This resource has been developed through the Learning from WOeRK project and seeks to support learning in the work place. For an overview of all related modules and resources please visit http://cpdoer.net/collections/Subjects
multiple linear regression | f statistic | dummy variables | simple linear regression | ukoer | lfwoer | cpd | learning from woerk | uopcpdrm | continuous professional development | hea | jisc | hefce | Education | X000License
Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from
http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course focuses on the specification and estimation of the linear regression model. The course departs from the standard Gauss-Markov assumptions to include heteroskedasticity, serial correlation, and errors in variables. Advanced topics include generalized least squares, instrumental variables, nonlinear regression, and limited dependent variable models. Economic applications are discussed throughout the course.Subjects
Economics | econometrics | linear regression model | Gauss-Markov | heteroskedasticity | serial correlation | errors | variables | generalized least squares | instrumental variables | nonlinear regression | limited dependent variable modelsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata18.05 Introduction to Probability and Statistics (MIT)
Description
This course provides an elementary introduction to probability and statistics with applications. Topics include: basic probability models; combinatorics; random variables; discrete and continuous probability distributions; statistical estimation and testing; confidence intervals; and an introduction to linear regression.Subjects
probability models | combinatorics | random variables | discrete probability distributions | continuous probability distributions | statistical estimation | statistical testing | confidence intervals | linear regressionLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.151 Probability and Statistics in Engineering (MIT)
Description
This class covers quantitative analysis of uncertainty and risk for engineering applications. Fundamentals of probability, random processes, statistics, and decision analysis are covered, along with random variables and vectors, uncertainty propagation, conditional distributions, and second-moment analysis. System reliability is introduced. Other topics covered include Bayesian analysis and risk-based decision, estimation of distribution parameters, hypothesis testing, simple and multiple linear regressions, and Poisson and Markov processes. There is an emphasis placed on real-world applications to engineering problems.Subjects
fundamentals of probability | random processes | statistics | decision analysis | random variables and vectors | uncertainty propagation | conditional distributions | second-moment analysis | system reliability | Bayesian analysis and risk-based decision | estimation of distribution parameters | hypothesis testing | simple and multiple linear regressions | Poisson and Markov processesLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)
Description
This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects
probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered.Subjects
machine learning algorithms | statistical inference | representation | generalization | model selection | linear/additive models | active learning | boosting | support vector machines | hidden Markov models | Bayesian networks | classification | linear regression | modern machine learning methodsLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)
Description
This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects
probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)
Description
This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects
probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)
Description
This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects
probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)
Description
This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects
probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)
Description
This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects
probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata