Searching for low-aspect ratio lifting surfaces : 4 results found | RSS Feed for this search

2.23 Hydrofoils and Propellers (13.04) (MIT) 2.23 Hydrofoils and Propellers (13.04) (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | Theory and design of hydrofoil sections | lifting and thickness problems | lifting and thickness problems | sub-cavitating sections | sub-cavitating sections | unsteady flow problems | unsteady flow problems | computer-aided design | computer-aided design | low drag | low drag | cavitation free sections | cavitation free sections | Lifting line and lifting surface theory | Lifting line and lifting surface theory | hydrofoil craft | hydrofoil craft | rudder | rudder | and control surface design | and control surface design | propeller lifting line | propeller lifting line | lifting surface theory | lifting surface theory | wake adapted propellers | wake adapted propellers | unsteady propeller thrust and torque | unsteady propeller thrust and torque | axially symmetric bodies | axially symmetric bodies | low-aspect ratio lifting surfaces | low-aspect ratio lifting surfaces | Hydrodynamic performance | Hydrodynamic performance | design of waterjets | design of waterjets | wind turbine rotors in steady and stochastic wind | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections | low drag | cavitation free sections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.04 Hydrofoils and Propellers (MIT) 13.04 Hydrofoils and Propellers (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | Theory and design of hydrofoil sections | lifting and thickness problems | lifting and thickness problems | sub-cavitating sections | sub-cavitating sections | unsteady flow problems | unsteady flow problems | computer-aided design | computer-aided design | low drag | low drag | cavitation free sections | cavitation free sections | Lifting line and lifting surface theory | Lifting line and lifting surface theory | hydrofoil craft | hydrofoil craft | rudder | rudder | and control surface design | and control surface design | propeller lifting line | propeller lifting line | lifting surface theory | lifting surface theory | wake adapted propellers | wake adapted propellers | unsteady propeller thrust and torque | unsteady propeller thrust and torque | axially symmetric bodies | axially symmetric bodies | low-aspect ratio lifting surfaces | low-aspect ratio lifting surfaces | Hydrodynamic performance | Hydrodynamic performance | design of waterjets | design of waterjets | wind turbine rotors in steady and stochastic wind | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections | low drag | cavitation free sections | 2.23 | 2.23

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.23 Hydrofoils and Propellers (13.04) (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | lifting and thickness problems | sub-cavitating sections | unsteady flow problems | computer-aided design | low drag | cavitation free sections | Lifting line and lifting surface theory | hydrofoil craft | rudder | and control surface design | propeller lifting line | lifting surface theory | wake adapted propellers | unsteady propeller thrust and torque | axially symmetric bodies | low-aspect ratio lifting surfaces | Hydrodynamic performance | design of waterjets | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.04 Hydrofoils and Propellers (MIT)

Description

This course deals with theory and design of hydrofoil sections; lifting and thickness problems for sub-cavitating sections, unsteady flow problems. It focuses on computer-aided design of low drag, cavitation free sections. The course also covers lifting line and lifting surface theory with applications to hydrofoil craft, rudder, and control surface design. Topics include propeller lifting line and lifting surface theory; computer-aided design of wake adapted propellers, unsteady propeller thrust and torque. The course is also an introduction to subjects like flow about axially symmetric bodies and low-aspect ratio lifting surfaces, and hydrodynamic performance and design of waterjets. We will also do an analysis of performance and design of wind turbine rotors in steady and stochastic win

Subjects

Theory and design of hydrofoil sections | lifting and thickness problems | sub-cavitating sections | unsteady flow problems | computer-aided design | low drag | cavitation free sections | Lifting line and lifting surface theory | hydrofoil craft | rudder | and control surface design | propeller lifting line | lifting surface theory | wake adapted propellers | unsteady propeller thrust and torque | axially symmetric bodies | low-aspect ratio lifting surfaces | Hydrodynamic performance | design of waterjets | wind turbine rotors in steady and stochastic wind | hydrofoil craft | rudder | and control surface design | 9. low drag | cavitation free sections | 5. hydrofoil craft | rudder | and control surface design | low drag | cavitation free sections | 2.23

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata