Searching for mach : 779 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Readme file for Computer Science Concepts

Description

This readme file contains details of links to all the Computer Science Concepts module's material held on Jorum and information about the module as well.Subjects

ukoer | strings lecture | induction and recursion lecture | induction lecture | recursion lecture | complexity lecture | languages lecture | computer sciences concepts test | computer science concepts test | computer science concepts assignment | computer science concepts practical | introduction | computer science concepts | computer science concept | computer science | strings and languages | strings and language | string and languages | string and language | string | language | languages | finite automata | automata | finite | push down automata | push down | prolog | data structures and algorithms | data structure and algorithms | data structures and algorithm | data structure and algorithm | data structures | data structure | algorithms | algorithm | revision exercises | revision | induction and recursion | induction | recursion | turing machines | turing machine | turing | machine | machines | complexity | grammar | grammar and languages | grammar and language | introduction lecture | computer science concepts lecture | computer science concept lecture | computer science lecture | strings and languages lecture | strings and language lecture | string and languages lecture | string and language lecture | string lecture | language lecture | finite automata lecture | automata lecture | finite lecture | push down automata lecture | push down lecture | prolog lecture | data structures and algorithms lecture | data structure and algorithms lecture | data structures and algorithm lecture | data structure and algorithm lecture | data structures lecture | data structure lecture | algorithms lecture | algorithm lecture | revision exercises lecture | revision lecture | turing machines lecture | turing machine lecture | turing lecture | machine lecture | machines lecture | computer science class test | computer science concept class test | computer science concepts class test | strings and languages class test | strings and language class test | string and languages class test | string and language class test | string class test | language class test | languages class test | introduction class test | grammar lecture | grammar and languages lecture | grammar and language lecture | computer science assignment | computer science concept assignment | strings and languages assignment | strings and language assignment | string and languages assignment | string and language assignment | string assignment | language assignment | languages assignment | finite automata class test | automata class test | finite class test | finite automata assignment | automata assignment | finite assignment | push down automata class test | push down class test | push down automata assignment | push down assignment | prolog class test | data structures and algorithms class test | data structure and algorithms class test | data structures and algorithm class test | data structure and algorithm class test | data structures class test | data structure class test | algorithms class test | algorithm class test | computer science practical | computer science concept practical | data structures and algorithms practical | data structure and algorithms practical | data structures and algorithm practical | data structure and algorithm practical | data structures practical | data structure practical | algorithms practical | algorithm practical | revision exercises class test | revision class test | induction and recursion class test | induction class test | recursion class test | induction and recursion assignment | induction assignment | recursion assignment | turing machines class test | turing machine class test | turing class test | machine class test | machines class test | turing machines assignment | turing machine assignment | turing assignment | machine assignment | machines assignment | complexity class test | grammar class test | grammar and languages class test | grammar and language class test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is offered both to undergraduates (6.061) and graduates (6.979), where the graduate version has different problem sets and an additional term project. 6.061 / 6.979 is an introductory course in the field of electric power systems and electrical to mechanical energy conversion. Material encountered in the subject includes: Fundamentals of energy-handling electric circuits and electromechanical apparatus. Modeling of magnetic field devices and description of their behavior using appropriate models. Simplification of problems using transformation techniques. Power electric circuits, magnetic circuits, lumped parameter electromechanics, elements of linear and rotating electric machinery. Modeling of synchronous, induction and dc machinery. The course uses examples from current rese This course is offered both to undergraduates (6.061) and graduates (6.979), where the graduate version has different problem sets and an additional term project. 6.061 / 6.979 is an introductory course in the field of electric power systems and electrical to mechanical energy conversion. Material encountered in the subject includes: Fundamentals of energy-handling electric circuits and electromechanical apparatus. Modeling of magnetic field devices and description of their behavior using appropriate models. Simplification of problems using transformation techniques. Power electric circuits, magnetic circuits, lumped parameter electromechanics, elements of linear and rotating electric machinery. Modeling of synchronous, induction and dc machinery. The course uses examples from current reseSubjects

electric power | electric power | electric power system | electric power system | electric circuits | electric circuits | electromechanical apparatus | electromechanical apparatus | magnetic field devices | magnetic field devices | transformation techniques | transformation techniques | magnetic circuits | magnetic circuits | lumped parameter electromechanics | lumped parameter electromechanics | linear electric machinery | linear electric machinery | rotating electric machinery | rotating electric machinery | synchronous machinery | synchronous machinery | induction machinery | induction machinery | dc machinery. | dc machinery. | mechanical energy conversion | mechanical energy conversion | energy | energy | new applications | new applications | dc machinery | dc machineryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is an introductory subject in the field of electric power systems and electrical to mechanical energy conversion. Electric power has become increasingly important as a way of transmitting and transforming energy in industrial, military and transportation uses. Examples of new uses for electric power include all manners of electric transportation systems (electric trains that run under catenary, diesel-electric railroad locomotion, 'maglev' medium and high speed tracked vehicles, electric transmission systems for ships, replacement of hydraulics in high performance actuators, aircraft launch and recovery systems, battery powered factory material transport systems, electric and hybrid electric cars and buses, even the 'more electric' airplane). The material in this subject w This course is an introductory subject in the field of electric power systems and electrical to mechanical energy conversion. Electric power has become increasingly important as a way of transmitting and transforming energy in industrial, military and transportation uses. Examples of new uses for electric power include all manners of electric transportation systems (electric trains that run under catenary, diesel-electric railroad locomotion, 'maglev' medium and high speed tracked vehicles, electric transmission systems for ships, replacement of hydraulics in high performance actuators, aircraft launch and recovery systems, battery powered factory material transport systems, electric and hybrid electric cars and buses, even the 'more electric' airplane). The material in this subject wSubjects

electric power | electric power | electric power system | electric power system | electric circuits | electric circuits | electromechanical apparatus | electromechanical apparatus | magnetic field devices | magnetic field devices | transformation techniques | transformation techniques | magnetic circuits | magnetic circuits | lumped parameter electromechanics | lumped parameter electromechanics | linear electric machinery | linear electric machinery | rotating electric machinery | rotating electric machinery | synchronous machinery | synchronous machinery | induction machinery | induction machinery | dc machinery. | dc machinery. | mechanical energy conversion | mechanical energy conversion | energy | energy | new applications | new applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.685 Electric Machines (MIT) 6.685 Electric Machines (MIT)

Description

6.685 explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing electromechanical design of the major classes of rotating and linear electric machines, and have an understanding of the principles of the energy conversion parts of Mechatronics. In addition to design, students learn how to estimate the dynamic parameters of electric machines and understand what the implications of those parameters are on the performance of systems incorporating those machines. 6.685 explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing electromechanical design of the major classes of rotating and linear electric machines, and have an understanding of the principles of the energy conversion parts of Mechatronics. In addition to design, students learn how to estimate the dynamic parameters of electric machines and understand what the implications of those parameters are on the performance of systems incorporating those machines.Subjects

electric | electric | machine | machine | transformers | transformers | electromechanical | electromechanical | transducers | transducers | rotating | rotating | linear electric machines | linear electric machines | lumped parameter | lumped parameter | dc | dc | induction | induction | synchronous | synchronous | energy conversion | energy conversion | electromechanics | electromechanics | Mechatronics | Mechatronics | Electromechanical transducers | Electromechanical transducers | rotating electric machines | rotating electric machines | lumped-parameter elecromechanics | lumped-parameter elecromechanics | interaction electromechanics | interaction electromechanics | device characteristics | device characteristics | energy conversion density | energy conversion density | efficiency | efficiency | system interaction characteristics | system interaction characteristics | regulation | regulation | stability | stability | controllability | controllability | response | response | electric machines | electric machines | drive systems | drive systems | electric machinery | electric machinery | electromechanical systems | electromechanical systems | design | design | dynamic parameters | dynamic parameters | phenomena | phenomena | interactions | interactions | classical mechanics | classical mechanicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Turing Machines

Description

This lecture forms part of the "Turing Machines" topic of the Computer Science Concepts module.Subjects

ukoer | turing machines | computer science | computer science concept | computer science concepts | turing machine | turing | machine | machines | turing machines lecture | computer science lecture | computer science concept lecture | computer science concepts lecture | turing machine lecture | turing lecture | machine lecture | machines lecture | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Turing Machines

Description

This class test forms part of the "Turing Machines" topic of the Computer Science Concepts module.Subjects

ukoer | computer science concepts test | turing machines | computer science | computer science concept | computer science concepts | turing machine | turing | machine | machines | turing machines class test | computer science class test | computer science concept class test | computer science concepts class test | turing machine class test | turing class test | machine class test | machines class test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Turing Machines

Description

This class test forms part of the "Turing Machines" topic of the Computer Science Concepts module.Subjects

ukoer | computer science concepts test | turing machines | computer science | computer science concept | computer science concepts | turing machine | turing | machine | machines | turing machines class test | computer science class test | computer science concept class test | computer science concepts class test | turing machine class test | turing class test | machine class test | machines class test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Turing Machines

Description

This class test forms part of the "Turing Machines" topic of the Computer Science Concepts module.Subjects

ukoer | computer science concepts test | turing machines | computer science | computer science concept | computer science concepts | turing machine | turing | machine | machines | turing machines class test | computer science class test | computer science concept class test | computer science concepts class test | turing machine class test | turing class test | machine class test | machines class test | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataComputer Science Concepts - Turing Machines

Description

This assignment forms part of the "Turing Machines" topic of the Computer Science Concepts module.Subjects

ukoer | turing machines | computer science | computer science concept | computer science concepts | turing machine | turing | machine | machines | turing machines assignment | computer science assignment | computer science concept assignment | computer science concepts assignment | turing machine assignment | turing assignment | machine assignment | machines assignment | Computer science | I100License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.670 Mechanical Engineering Tools (MIT) 2.670 Mechanical Engineering Tools (MIT)

Description

This course introduces the fundamentals of machine tool and computer tool use. Students work with a variety of machine tools including the bandsaw, milling machine, and lathe. Instruction given on MATLAB®, MAPLE®, XESS™, and CAD. Emphasis is on problem solving, not programming or algorithmic development. Assignments are project-oriented relating to mechanical engineering topics. It is recommended that students take this subject in the first IAP after declaring the major in Mechanical Engineering. This course was co-created by Prof. Douglas Hart and Dr. Kevin Otto. This course introduces the fundamentals of machine tool and computer tool use. Students work with a variety of machine tools including the bandsaw, milling machine, and lathe. Instruction given on MATLAB®, MAPLE®, XESS™, and CAD. Emphasis is on problem solving, not programming or algorithmic development. Assignments are project-oriented relating to mechanical engineering topics. It is recommended that students take this subject in the first IAP after declaring the major in Mechanical Engineering. This course was co-created by Prof. Douglas Hart and Dr. Kevin Otto.Subjects

fundamentals of machine tool and computer tool use | fundamentals of machine tool and computer tool use | bandsaw | bandsaw | milling machine | milling machine | lathe | lathe | MATLAB | MATLAB | MAPLE | MAPLE | XESS | XESS | CAD | CAD | problem solving | problem solving | project-oriented | project-oriented | machine tool use | machine tool use | computer tool use | computer tool use | mechanical engineering projects | mechanical engineering projects | Inter Activities Period | Inter Activities Period | IAP | IAP | engine design | engine design | engine construction | engine construction | Stirling engines | Stirling enginesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.867 Machine Learning (MIT) 6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered. 6.867 is an introductory course on machine learning which gives an overview of many concepts, techniques, and algorithms in machine learning, beginning with topics such as classification and linear regression and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course will give the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how, why, and when they work. The underlying theme in the course is statistical inference as it provides the foundation for most of the methods covered.Subjects

machine learning algorithms | machine learning algorithms | statistical inference | statistical inference | representation | representation | generalization | generalization | model selection | model selection | linear/additive models | linear/additive models | active learning | active learning | boosting | boosting | support vector machines | support vector machines | hidden Markov models | hidden Markov models | Bayesian networks | Bayesian networks | classification | classification | linear regression | linear regression | modern machine learning methods | modern machine learning methodsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Derrière le front français. Une école d'application où l'on apprend aux hommes la manœuvre des fusils mitrailleurs.Subjects

bleu | machinegun | lightmachinegun | machineguns | frencharmy | thegreatwar | greatwar | worldwarone | worldwari | wwi | firstworldwar | arméedeterre | armeedeterre | chauchatmachinegun | chauchatlightmachinegun | chauchat | hotchkissmachinegun | hotchkissLicense

No known copyright restrictionsSite sourced from

Université de Caen Basse-Normandie | FlickRAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataTwomey's Machine Bakery Twomey's Machine Bakery

Description

Subjects

ireland | ireland | horses | horses | people | people | dog | dog | colour | colour | quality | quality | cork | cork | dalmation | dalmation | sweetness | sweetness | carts | carts | cocork | cocork | munster | munster | drivers | drivers | fermentation | fermentation | glassnegative | glassnegative | shopkeeper | shopkeeper | undertaker | undertaker | alderman | alderman | cleanliness | cleanliness | publican | publican | johnnunan | johnnunan | kneaded | kneaded | richardburke | richardburke | moderateprices | moderateprices | shandonstreet | shandonstreet | ceylontea | ceylontea | nationallibraryofireland | nationallibraryofireland | indiantea | indiantea | corkexaminer | corkexaminer | northwestward | northwestward | o’connor | o’connor | hannahburke | hannahburke | greenhousethings | greenhousethings | directimporters | directimporters | machinemadebread | machinemadebread | ferguso’connorcollection | ferguso’connorcollection | johntwomeysons | johntwomeysons | generalgrocers | generalgrocers | machinemadecake | machinemadecake | mallowlane | mallowlane | ferguso’connorcollectionstandardtagsferguso’connor | ferguso’connorcollectionstandardtagsferguso’connor | alberttwomey | alberttwomey | bakerandgrocer | bakerandgrocer | 102shandonst | 102shandonst | denisjmurphy | denisjmurphy | kateseehan | kateseehan | highclassbread | highclassbread | vandeliveriesdaily | vandeliveriesdaily | cityandsuburbs | cityandsuburbs | finenessoftexture | finenessoftexture | flavourandmoisture | flavourandmoisture | sheehansniall | sheehansniall | terenceo’connor | terenceo’connor | 105shandonstreet | 105shandonstreet | 22cattlelane | 22cattlelane | aldermanto’connor | aldermanto’connor | bakeryteawarehouse | bakeryteawarehouse | machinebakery | machinebakeryLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=47290943@N03&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.061 Introduction to Electric Power Systems (MIT)

Description

This course is offered both to undergraduates (6.061) and graduates (6.979), where the graduate version has different problem sets and an additional term project. 6.061 / 6.979 is an introductory course in the field of electric power systems and electrical to mechanical energy conversion. Material encountered in the subject includes: Fundamentals of energy-handling electric circuits and electromechanical apparatus. Modeling of magnetic field devices and description of their behavior using appropriate models. Simplification of problems using transformation techniques. Power electric circuits, magnetic circuits, lumped parameter electromechanics, elements of linear and rotating electric machinery. Modeling of synchronous, induction and dc machinery. The course uses examples from current reseSubjects

electric power | electric power system | electric circuits | electromechanical apparatus | magnetic field devices | transformation techniques | magnetic circuits | lumped parameter electromechanics | linear electric machinery | rotating electric machinery | synchronous machinery | induction machinery | dc machinery. | mechanical energy conversion | energy | new applications | dc machineryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataGerman Mitrailleuses in Invalides, Paris (LOC) German Mitrailleuses in Invalides, Paris (LOC)

Description

Subjects

libraryofcongress | libraryofcongress | machinegun | machinegun | maschinengewehr08 | maschinengewehr08 | mg08 | mg08 | spandaumachinegun | spandaumachinegun | spandaugun | spandaugun | spandau08 | spandau08 | artillery | artillery | cannon | cannon | machineguntripod | machineguntripod | tripod | tripodLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataCzechoslovak armored train (LOC) Czechoslovak armored train (LOC)

Description

Subjects

libraryofcongress | libraryofcongress | signalcorps | signalcorps | soldier | soldier | soldiers | soldiers | machinegunner | machinegunner | machinegunners | machinegunners | machinegun | machinegun | armoredtrain | armoredtrain | armouredtrain | armouredtrain | czecharmy | czecharmy | czechoslovakarmy | czechoslovakarmyLicense

No known copyright restrictionsSite sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=8623220@N02&lang=en-us&format=rss_200Attribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.061 Introduction to Electric Power Systems (MIT)

Description

This course is an introductory subject in the field of electric power systems and electrical to mechanical energy conversion. Electric power has become increasingly important as a way of transmitting and transforming energy in industrial, military and transportation uses. Examples of new uses for electric power include all manners of electric transportation systems (electric trains that run under catenary, diesel-electric railroad locomotion, 'maglev' medium and high speed tracked vehicles, electric transmission systems for ships, replacement of hydraulics in high performance actuators, aircraft launch and recovery systems, battery powered factory material transport systems, electric and hybrid electric cars and buses, even the 'more electric' airplane). The material in this subject wSubjects

electric power | electric power system | electric circuits | electromechanical apparatus | magnetic field devices | transformation techniques | magnetic circuits | lumped parameter electromechanics | linear electric machinery | rotating electric machinery | synchronous machinery | induction machinery | dc machinery. | mechanical energy conversion | energy | new applicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

6.685 explores concepts in electromechanics, using electric machinery as examples. It teaches an understanding of principles and analysis of electromechanical systems. By the end of the course, students are capable of doing electromechanical design of the major classes of rotating and linear electric machines, and have an understanding of the principles of the energy conversion parts of Mechatronics. In addition to design, students learn how to estimate the dynamic parameters of electric machines and understand what the implications of those parameters are on the performance of systems incorporating those machines.Subjects

electric | machine | transformers | electromechanical | transducers | rotating | linear electric machines | lumped parameter | dc | induction | synchronous | energy conversion | electromechanics | Mechatronics | Electromechanical transducers | rotating electric machines | lumped-parameter elecromechanics | interaction electromechanics | device characteristics | energy conversion density | efficiency | system interaction characteristics | regulation | stability | controllability | response | electric machines | drive systems | electric machinery | electromechanical systems | design | dynamic parameters | phenomena | interactions | classical mechanicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata21A.350J The Anthropology of Computing (MIT) 21A.350J The Anthropology of Computing (MIT)

Description

This course examines computers anthropologically, as meaningful tools revealing the social and cultural orders that produce them. We read classic texts in computer science along with works analyzing links between machines and culture. We explore early computation theory and capitalist manufacturing; cybernetics and WWII operations research; artificial intelligence and gendered subjectivity; the creation and commodification of the personal computer; the hacking aesthetic; non-Western histories of computing; the growth of the Internet as a military, academic, and commercial project; the politics of identity in cyberspace; and the emergence of "evolutionary" computation. This course examines computers anthropologically, as meaningful tools revealing the social and cultural orders that produce them. We read classic texts in computer science along with works analyzing links between machines and culture. We explore early computation theory and capitalist manufacturing; cybernetics and WWII operations research; artificial intelligence and gendered subjectivity; the creation and commodification of the personal computer; the hacking aesthetic; non-Western histories of computing; the growth of the Internet as a military, academic, and commercial project; the politics of identity in cyberspace; and the emergence of "evolutionary" computation.Subjects

Computing | Computing | machines and culture | machines and culture | computation theory | computation theory | cybernetics | cybernetics | operations research | operations research | artifical intelligence | artifical intelligence | personal computer | personal computer | commodification | commodification | hacking | hacking | hacker | hacker | Internet | Internet | cyberspace | cyberspace | indentity in cyberspace | indentity in cyberspace | cosmology | cosmology | clockwork | clockwork | Charles Babbage | Charles Babbage | Ada Lovelace | Ada Lovelace | Industrial Revolution | Industrial Revolution | calculating machine | calculating machine | coding | coding | cold war | cold war | Alan Turing | Alan Turing | African mathematical systems | African mathematical systems | counterculture | counterculture | PC | PC | gaming | gaming | open source | open source | free software | free software | software | software | 21A.350 | 21A.350 | SP.484 | SP.484 | STS.086 | STS.086License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.72 Elements of Mechanical Design (MIT) 2.72 Elements of Mechanical Design (MIT)

Description

This course provides an advanced treatment of machine elements such as bearings, springs, gears, cams, and mechanisms. Analysis of these elements includes extensive application of core engineering curriculum including solid mechanics and fluid dynamics. The course offers practice in skills needed for machine design such as estimation, drawing, and experimentation. Students work in small teams to design and build machines that address real-world challenges. This course provides an advanced treatment of machine elements such as bearings, springs, gears, cams, and mechanisms. Analysis of these elements includes extensive application of core engineering curriculum including solid mechanics and fluid dynamics. The course offers practice in skills needed for machine design such as estimation, drawing, and experimentation. Students work in small teams to design and build machines that address real-world challenges.Subjects

machine design | machine design | hardware | hardware | project | project | machine element | machine element | design process | design process | design layout | design layout | prototype | prototype | mechanism | mechanism | engineering | engineering | fabrication | fabricationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.867 Machine Learning (MIT) 6.867 Machine Learning (MIT)

Description

6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered.  6.867 is an introductory course on machine learning which provides an overview of many techniques and algorithms in machine learning, beginning with topics such as simple perceptrons and ending up with more recent topics such as boosting, support vector machines, hidden Markov models, and Bayesian networks. The course gives the student the basic ideas and intuition behind modern machine learning methods as well as a bit more formal understanding of how and why they work. The underlying theme in the course is statistical inference as this provides the foundation for most of the methods covered. Subjects

machine learning | machine learning | perceptrons | perceptrons | boosting | boosting | support vector machines | support vector machines | Markov | Markov | hidden Markov models | hidden Markov models | HMM | HMM | Bayesian networks | Bayesian networks | statistical inference | statistical inference | regression | regression | clustering | clustering | bias | bias | variance | variance | regularization | regularization | Generalized Linear Models | Generalized Linear Models | neural networks | neural networks | Support Vector Machine | Support Vector Machine | SVM | SVM | mixture models | mixture models | kernel density estimation | kernel density estimation | gradient descent | gradient descent | quadratic programming | quadratic programming | EM algorithm | EM algorithm | orward-backward algorithm | orward-backward algorithm | junction tree algorithm | junction tree algorithm | Gibbs sampling | Gibbs samplingLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The main goal of this course is to study the generalization ability of a number of popular machine learning algorithms such as boosting, support vector machines and neural networks. Topics include Vapnik-Chervonenkis theory, concentration inequalities in product spaces, and other elements of empirical process theory. The main goal of this course is to study the generalization ability of a number of popular machine learning algorithms such as boosting, support vector machines and neural networks. Topics include Vapnik-Chervonenkis theory, concentration inequalities in product spaces, and other elements of empirical process theory.Subjects

machine learning algorithms | machine learning algorithms | boosting | boosting | support | support | support vector machines | support vector machines | neural networks | neural networks | Vapnik- Chervonenkis theory | Vapnik- Chervonenkis theory | concentration inequalities in product spaces | concentration inequalities in product spaces | empirical process theory | empirical process theoryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLAB This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLABSubjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derviative | substantial derviative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamics | Incompressible | IncompressibleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.823 Computer System Architecture (MIT) 6.823 Computer System Architecture (MIT)

Description

6.823 is a study of the evolution of computer architecture and the factors influencing the design of hardware and software elements of computer systems. Topics may include: instruction set design; processor micro-architecture and pipelining; cache and virtual memory organizations; protection and sharing; I/O and interrupts; in-order and out-of-order superscalar architectures; VLIW machines; vector supercomputers; multithreaded architectures; symmetric multiprocessors; and parallel computers. 6.823 is a study of the evolution of computer architecture and the factors influencing the design of hardware and software elements of computer systems. Topics may include: instruction set design; processor micro-architecture and pipelining; cache and virtual memory organizations; protection and sharing; I/O and interrupts; in-order and out-of-order superscalar architectures; VLIW machines; vector supercomputers; multithreaded architectures; symmetric multiprocessors; and parallel computers.Subjects

computer architecture | | computer architecture | | computer system architecture | | computer system architecture | | hardware | | hardware | | hardware design | | hardware design | | software | | software | | software design | | software design | | instruction set design | | instruction set design | | processor micro-architecture | | processor micro-architecture | | pipelining | | pipelining | | cache memory | | cache memory | | irtual memory | | irtual memory | | I/O | | I/O | | input/output | | input/output | | interrupts | | interrupts | | superscalar architectures | | superscalar architectures | | VLIW machines | | VLIW machines | | vector supercomputers | | vector supercomputers | | multithreaded architectures | | multithreaded architectures | | symmetric multiprocessors | | symmetric multiprocessors | | parallel computers | parallel computers | computer architecture | computer architecture | computer system architecture | computer system architecture | hardware | hardware | hardware design | hardware design | software | software | software design | software design | instruction set design | instruction set design | processor micro-architecture | processor micro-architecture | pipelining | pipelining | cache memory | cache memory | virtual memory | virtual memory | I/O | I/O | input/output | input/output | interrupts | interrupts | superscalar architectures | superscalar architectures | VLIW machines | VLIW machines | vector supercomputers | vector supercomputers | multithreaded architectures | multithreaded architectures | symmetric multiprocessors | symmetric multiprocessorsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.72 Elements of Mechanical Design (MIT) 2.72 Elements of Mechanical Design (MIT)

Description

In 2.72, students will learn the theory and experience the practice of machine design in the context of real world machine design hardware projects. Emphasis will be placed on the relationship of machine elements to the design process; including their availability, their uses, and the methods for determining their potential performance. Each group will complete and document a design layout for a prototype device. In 2.72, students will learn the theory and experience the practice of machine design in the context of real world machine design hardware projects. Emphasis will be placed on the relationship of machine elements to the design process; including their availability, their uses, and the methods for determining their potential performance. Each group will complete and document a design layout for a prototype device.Subjects

machine design | machine design | hardware projects | hardware projects | machine elements | machine elements | design process | design process | design layout | design layout | prototype | prototypeLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata