Searching for molecular motors : 6 results found | RSS Feed for this search

BE.410J Molecular, Cellular and Tissue Biomechanics (MIT) BE.410J Molecular, Cellular and Tissue Biomechanics (MIT)

Description

This course develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include: structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels will also be investigated.This course was originally co-developed by Professors Alan Grodzinsky, Roger Kamm, and L. Mahadevan. This course develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include: structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels will also be investigated.This course was originally co-developed by Professors Alan Grodzinsky, Roger Kamm, and L. Mahadevan.

Subjects

Scaling laws | Scaling laws | continuum mechanics | continuum mechanics | biomechanical phenomena | biomechanical phenomena | length scales | length scales | tissue structure | tissue structure | molecular basis for macroscopic properties | molecular basis for macroscopic properties | chemical and electrical effects on mechanical behavior | chemical and electrical effects on mechanical behavior | cell mechanics | motility and adhesion | cell mechanics | motility and adhesion | biomembranes | biomembranes | biomolecular mechanics and molecular motors | biomolecular mechanics and molecular motors | Experimental methods | Experimental methods | 2.798J | 2.798J | 6.524J | 6.524J | 10.537 | 10.537 | BE.410 | BE.410 | 2.798 | 2.798 | 6.524 | 6.524

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT) 20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces. This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterials | biomaterial engineering | biomaterial engineering | biotechnology | biotechnology | cell-guiding surface | cell-guiding surface | molecular biomaterials | molecular biomaterials | drug release | drug release | polymers | polymers | pulsatile release | pulsatile release | polymerization | polymerization | polyer erosion | polyer erosion | tissue engineering | tissue engineering | hydrogels | hydrogels | adhesion | adhesion | migration | migration | drug diffusion | drug diffusion | molecular switches | molecular switches | molecular motors | molecular motors | nanoparticles | nanoparticles | microparticles | microparticles | vaccines | vaccines | drug targeting | drug targeting | micro carriers | micro carriers | nano carriers | nano carriers | intracellular drug delivery | intracellular drug delivery | 20.462 | 20.462 | 3.962 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.410J Molecular, Cellular and Tissue Biomechanics (BE.410J) (MIT) 20.410J Molecular, Cellular and Tissue Biomechanics (BE.410J) (MIT)

Description

This course develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include: structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels will also be investigated. This course was originally co-developed by Professors Alan Grodzinsky, Roger Kamm, and L. Mahadevan. This course develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include: structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels will also be investigated. This course was originally co-developed by Professors Alan Grodzinsky, Roger Kamm, and L. Mahadevan.

Subjects

Scaling laws | Scaling laws | continuum mechanics | continuum mechanics | biomechanical phenomena | biomechanical phenomena | length scales | length scales | tissue structure | tissue structure | molecular basis for macroscopic properties | molecular basis for macroscopic properties | chemical and electrical effects on mechanical behavior | chemical and electrical effects on mechanical behavior | cell mechanics | motility and adhesion | cell mechanics | motility and adhesion | biomembranes | biomembranes | biomolecular mechanics and molecular motors | biomolecular mechanics and molecular motors | Experimental methods | Experimental methods | BE.410J | BE.410J | BE.410 | BE.410 | 2.798 | 2.798 | 6.524 | 6.524

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.410J Molecular, Cellular and Tissue Biomechanics (MIT)

Description

This course develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include: structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels will also be investigated.This course was originally co-developed by Professors Alan Grodzinsky, Roger Kamm, and L. Mahadevan.

Subjects

Scaling laws | continuum mechanics | biomechanical phenomena | length scales | tissue structure | molecular basis for macroscopic properties | chemical and electrical effects on mechanical behavior | cell mechanics | motility and adhesion | biomembranes | biomolecular mechanics and molecular motors | Experimental methods | 2.798J | 6.524J | 10.537 | BE.410 | 2.798 | 6.524

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.462J Molecular Principles of Biomaterials (MIT)

Description

This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Subjects

biomaterials | biomaterial engineering | biotechnology | cell-guiding surface | molecular biomaterials | drug release | polymers | pulsatile release | polymerization | polyer erosion | tissue engineering | hydrogels | adhesion | migration | drug diffusion | molecular switches | molecular motors | nanoparticles | microparticles | vaccines | drug targeting | micro carriers | nano carriers | intracellular drug delivery | 20.462 | 3.962

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.410J Molecular, Cellular and Tissue Biomechanics (BE.410J) (MIT)

Description

This course develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include: structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. Experimental methods for probing structures at the tissue, cellular, and molecular levels will also be investigated. This course was originally co-developed by Professors Alan Grodzinsky, Roger Kamm, and L. Mahadevan.

Subjects

Scaling laws | continuum mechanics | biomechanical phenomena | length scales | tissue structure | molecular basis for macroscopic properties | chemical and electrical effects on mechanical behavior | cell mechanics | motility and adhesion | biomembranes | biomolecular mechanics and molecular motors | Experimental methods | BE.410J | BE.410 | 2.798 | 6.524

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata