Searching for motor control : 29 results found | RSS Feed for this search

1

9.373 Somatosensory and Motor Systems (MIT) 9.373 Somatosensory and Motor Systems (MIT)

Description

General principles of motor control in biological systems. Structure and function of sensory receptors. Muscle structure and reflex arcs. Spinal cord. Locomotion. Oculomotor control. Cerebellar structure and function. Motor thalamus. Basal ganglia. Somatosensory cortex: maps and neuronal properties. Cortical plasticity. Motor psychophysics and computational approaches to motor control, and motor planning. General principles of motor control in biological systems. Structure and function of sensory receptors. Muscle structure and reflex arcs. Spinal cord. Locomotion. Oculomotor control. Cerebellar structure and function. Motor thalamus. Basal ganglia. Somatosensory cortex: maps and neuronal properties. Cortical plasticity. Motor psychophysics and computational approaches to motor control, and motor planning.

Subjects

locomotion | locomotion | motor control | motor control | biological systems | biological systems | Structure | Structure | function | function | Muscle structure | Muscle structure | reflex | reflex | Spinal cord | Spinal cord | Oculomotor control | Oculomotor control | Cerebellar structure | Cerebellar structure | Motor thalamus | Motor thalamus | Basal ganglia | Basal ganglia | Somatosensory cortex | Somatosensory cortex | Cortical plasticity | Cortical plasticity | Motor psychophysics | Motor psychophysics | motor planning | motor planning | Locomotion | Locomotion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.05 Neural Basis of Movement (MIT) 9.05 Neural Basis of Movement (MIT)

Description

Surveys general principles and specific examples of motor control in biological systems. Emphasizes the neural mechanisms underlying different aspects of movement and movement planning. Covers sensory reception, reflex arcs, spinal cord organization, pattern generators, muscle function, locomotion, eye movement, and cognitive aspects of motor control. Functions of central motor structures including cerebellum, basal ganglia, and cerebral cortex considered. Cortical plasticity, motor learning and computational approaches to motor control, and motor disorders are discussed. Surveys general principles and specific examples of motor control in biological systems. Emphasizes the neural mechanisms underlying different aspects of movement and movement planning. Covers sensory reception, reflex arcs, spinal cord organization, pattern generators, muscle function, locomotion, eye movement, and cognitive aspects of motor control. Functions of central motor structures including cerebellum, basal ganglia, and cerebral cortex considered. Cortical plasticity, motor learning and computational approaches to motor control, and motor disorders are discussed.

Subjects

motor control | motor control | neural mechanisms | neural mechanisms | movement | movement | movement planning | movement planning | sensory reception | sensory reception | reflex arcs | reflex arcs | spinal cord organization | spinal cord organization | pattern generators | pattern generators | muscle function | muscle function | locomotion | locomotion | eye movement | eye movement | cognitive aspects of motor control | cognitive aspects of motor control | central motor structures | central motor structures | cerebellum | cerebellum | basal ganglia | basal ganglia | cerebral cortex | cerebral cortex | Cortical plasticity | Cortical plasticity | motor learning | motor learning | computation | computation | motor disorders | motor disorders

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.05 Neural Basis of Movement (MIT) 9.05 Neural Basis of Movement (MIT)

Description

Surveys general principles and specific examples of motor control in biological systems. Emphasizes the neural mechanisms underlying different aspects of movement and movement planning. Covers sensory reception, reflex arcs, spinal cord organization, pattern generators, muscle function, locomotion, eye movement, and cognitive aspects of motor control. Functions of central motor structures including cerebellum, basal ganglia, and cerebral cortex considered. Cortical plasticity, motor learning and computational approaches to motor control, and motor disorders are discussed. Surveys general principles and specific examples of motor control in biological systems. Emphasizes the neural mechanisms underlying different aspects of movement and movement planning. Covers sensory reception, reflex arcs, spinal cord organization, pattern generators, muscle function, locomotion, eye movement, and cognitive aspects of motor control. Functions of central motor structures including cerebellum, basal ganglia, and cerebral cortex considered. Cortical plasticity, motor learning and computational approaches to motor control, and motor disorders are discussed.

Subjects

motor control | motor control | neural mechanisms | neural mechanisms | movement | movement | movement planning | movement planning | sensory reception | sensory reception | reflex arcs | reflex arcs | spinal cord organization | spinal cord organization | pattern generators | pattern generators | muscle function | muscle function | locomotion | locomotion | eye movement | eye movement | cognitive aspects of motor control | cognitive aspects of motor control | central motor structures | central motor structures | cerebellum | cerebellum | basal ganglia | basal ganglia | cerebral cortex | cerebral cortex | Cortical plasticity | Cortical plasticity | motor learning | motor learning | computation | computation | motor disorders | motor disorders

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.10 Cognitive Neuroscience (MIT) 9.10 Cognitive Neuroscience (MIT)

Description

Course topics explore the relations between neural systems and cognition, emphasizing attention, vision, language, motor control, and memory. An introduction to basic neuroanatomy, functional imaging techniques, and behavioral measures of cognition is given with discussion of methods by which inferences about the brain bases of cognition are made. Evidence from patients with neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Balint's syndrome, amnesia, and focal lesions from stroke is given as well as from normal human participants. Course topics explore the relations between neural systems and cognition, emphasizing attention, vision, language, motor control, and memory. An introduction to basic neuroanatomy, functional imaging techniques, and behavioral measures of cognition is given with discussion of methods by which inferences about the brain bases of cognition are made. Evidence from patients with neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Balint's syndrome, amnesia, and focal lesions from stroke is given as well as from normal human participants.

Subjects

emphasizing attention | emphasizing attention | vision | vision | language | language | motor control | motor control | memory | memory | functional imaging techniques | functional imaging techniques | cognition | cognition | neurological diseases | neurological diseases | Alzheimer's disease | Alzheimer's disease | Parkinson's disease | Parkinson's disease | Huntington's disease | Huntington's disease | Balint's syndrome | Balint's syndrome | amnesia | amnesia | focal lesions | focal lesions | stroke | stroke

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.641J Introduction to Neural Networks (MIT) 9.641J Introduction to Neural Networks (MIT)

Description

Organization of synaptic connectivity as the basis of neural computation and learning. Single and multilayer perceptrons. Dynamical theories of recurrent networks: amplifiers, attractors, and hybrid computation. Backpropagation and Hebbian learning. Models of perception, motor control, memory, and neural development. Organization of synaptic connectivity as the basis of neural computation and learning. Single and multilayer perceptrons. Dynamical theories of recurrent networks: amplifiers, attractors, and hybrid computation. Backpropagation and Hebbian learning. Models of perception, motor control, memory, and neural development.

Subjects

synaptic connectivity | synaptic connectivity | computation | computation | learning | learning | multilayer perceptrons | multilayer perceptrons | recurrent networks | recurrent networks | amplifiers | amplifiers | attractors | attractors | hybrid computation | hybrid computation | Backpropagation | Backpropagation | Hebbian learning | Hebbian learning | perception | perception | motor control | motor control | memory | memory | neural development | neural development | 9.641 | 9.641 | 8.594 | 8.594

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.10 Cognitive Neuroscience (MIT) 9.10 Cognitive Neuroscience (MIT)

Description

Explores the relations between neural systems and cognition, emphasizing attention, vision, language, motor control, and memory. Introduces basic neuroanatomy, functional imaging techniques, and behavioral measures of cognition. Discusses methods by which inferences about the brain bases of cognition are made. Considers evidence from patients with neurological diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Balint's syndrome, amnesia, and focal lesions from stroke) and from normal human participants. An additional project is required for graduate credit. Alternate years. Explores the relations between neural systems and cognition, emphasizing attention, vision, language, motor control, and memory. Introduces basic neuroanatomy, functional imaging techniques, and behavioral measures of cognition. Discusses methods by which inferences about the brain bases of cognition are made. Considers evidence from patients with neurological diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Balint's syndrome, amnesia, and focal lesions from stroke) and from normal human participants. An additional project is required for graduate credit. Alternate years.

Subjects

emphasizing attention | emphasizing attention | vision | vision | language | language | motor control | motor control | memory | memory | functional imaging techniques | functional imaging techniques | cognition | cognition | neurological diseases (Alzheimer's disease) | neurological diseases (Alzheimer's disease) | Parkinson's disease | Parkinson's disease | Huntington's disease | Huntington's disease | Balint's syndrome | Balint's syndrome | amnesia | amnesia | focal lesions from stroke | focal lesions from stroke

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.10 Cognitive Neuroscience (MIT) 9.10 Cognitive Neuroscience (MIT)

Description

This course explores the cognitive and neural processes that support attention, vision, language, motor control, navigation, and memory. It introduces basic neuroanatomy, functional imaging techniques, and behavioral measures of cognition, and discusses methods by which inferences about the brain bases of cognition are made. We consider evidence from patients with neurological diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Balint's syndrome, amnesia, and focal lesions from stroke) and from normal human participants. This course explores the cognitive and neural processes that support attention, vision, language, motor control, navigation, and memory. It introduces basic neuroanatomy, functional imaging techniques, and behavioral measures of cognition, and discusses methods by which inferences about the brain bases of cognition are made. We consider evidence from patients with neurological diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Balint's syndrome, amnesia, and focal lesions from stroke) and from normal human participants.

Subjects

emphasizing attention | emphasizing attention | vision | vision | language | language | motor control | motor control | memory | memory | functional imaging techniques | functional imaging techniques | cognition | cognition | neurological diseases | neurological diseases | Alzheimer's disease | Alzheimer's disease | Parkinson's disease | Parkinson's disease | Huntington's disease | Huntington's disease | Balint's syndrome | Balint's syndrome | amnesia | amnesia | focal lesions | focal lesions | stroke | stroke

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.641J Introduction to Neural Networks (MIT) 9.641J Introduction to Neural Networks (MIT)

Description

This course explores the organization of synaptic connectivity as the basis of neural computation and learning. Perceptrons and dynamical theories of recurrent networks including amplifiers, attractors, and hybrid computation are covered. Additional topics include backpropagation and Hebbian learning, as well as models of perception, motor control, memory, and neural development. This course explores the organization of synaptic connectivity as the basis of neural computation and learning. Perceptrons and dynamical theories of recurrent networks including amplifiers, attractors, and hybrid computation are covered. Additional topics include backpropagation and Hebbian learning, as well as models of perception, motor control, memory, and neural development.

Subjects

synaptic connectivity | synaptic connectivity | computation | computation | learning | learning | multilayer perceptrons | multilayer perceptrons | recurrent networks | recurrent networks | amplifiers | amplifiers | attractors | attractors | hybrid computation | hybrid computation | Backpropagation | Backpropagation | Hebbian learning | Hebbian learning | perception | perception | motor control | motor control | memory | memory | neural development | neural development

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.722J Brain Mechanisms for Hearing and Speech (MIT) HST.722J Brain Mechanisms for Hearing and Speech (MIT)

Description

An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds. An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.

Subjects

HST.722 | HST.722 | 9.044 | 9.044 | separation operations | separation operations | recovery of products from biological processes | recovery of products from biological processes | membrane filtration | membrane filtration | chromatography | chromatography | centrifugation | centrifugation | cell disruption | cell disruption | extraction | extraction | process design | process design | downstream processing | downstream processing | biochemical product recovery | biochemical product recovery | modes of recovery and purification | modes of recovery and purification | biochemical engineering | biochemical engineering | hearing | hearing | speech | speech | auditory brainstem | auditory brainstem | auditory cortex | auditory cortex | auditory reflexes | auditory reflexes | descending systems | descending systems | human auditory system | human auditory system | speech motor control | speech motor control | auditory learning | auditory learning | cortical representation | cortical representation | dorsal cochlear nucleus | dorsal cochlear nucleus | neural coding | neural coding | thalamo-cortical organization | thalamo-cortical organization | thalamo-cortical processing | thalamo-cortical processing | audio-visual integration | audio-visual integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Neural Basis of Vision and Audition (MIT) 9.04 Neural Basis of Vision and Audition (MIT)

Description

This course examines the neural bases of visual and auditory processing for perception and sensorimotor control, focusing on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are studied. This course examines the neural bases of visual and auditory processing for perception and sensorimotor control, focusing on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are studied.

Subjects

visual processing | visual processing | auditory processing | auditory processing | perception | perception | sensorimotor control | sensorimotor control | nervous system | nervous system | depth perception | depth perception | auditory responses | auditory responses | speech coding | speech coding | spatial localization | spatial localization | retina | retina | lateral geniculate nucleus | lateral geniculate nucleus | visual cortex | visual cortex | auditory nerve | auditory nerve | Cochlear | Cochlear | brainstem reflexes | brainstem reflexes | sound localization | sound localization | auditory cortex | auditory cortex

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Sensory Systems (MIT) 9.04 Sensory Systems (MIT)

Description

Includes audio/video content: AV lectures. This course examines the neural bases of sensory perception. The focus is on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Topics include visual pattern, color and depth perception, auditory responses and sound localization, and somatosensory perception. Includes audio/video content: AV lectures. This course examines the neural bases of sensory perception. The focus is on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Topics include visual pattern, color and depth perception, auditory responses and sound localization, and somatosensory perception.

Subjects

sensory systems | sensory systems | visual system | visual system | auditory system | auditory system | visual processing | visual processing | auditory processing | auditory processing | perception | perception | sensorimotor control | sensorimotor control | nervous system | nervous system | depth perception | depth perception | auditory responses | auditory responses | speech coding | speech coding | spatial localization | spatial localization | retina | retina | lateral geniculate nucleus | lateral geniculate nucleus | visual cortex | visual cortex | auditory nerve | auditory nerve | Cochlear | Cochlear | brainstem reflexes | brainstem reflexes | sound localization | sound localization | auditory cortex | auditory cortex | echolocation | echolocation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.737 Mechatronics (MIT) 2.737 Mechatronics (MIT)

Description

This course teaches the design of mechatronic systems which integrate mechanical, electrical, and control systems engineering. A computer hard disk drive is an example of a complex mechatronic system discussed in the class. Laboratories form the core of the course. They cover topics such as aliasing, quantization, electronic feedback, power amplifiers, digital logic, encoder interfacing, and motor control. The labs make extensive use of Simulink®, a MATLAB® toolbox which allows for graphical simulation and programming of real-time control systems. The new lab facilities feature dSPACE digital signal processors which are programmed through Simulink®. Each student builds circuits on a breadboard kit which is issued to them. This course teaches the design of mechatronic systems which integrate mechanical, electrical, and control systems engineering. A computer hard disk drive is an example of a complex mechatronic system discussed in the class. Laboratories form the core of the course. They cover topics such as aliasing, quantization, electronic feedback, power amplifiers, digital logic, encoder interfacing, and motor control. The labs make extensive use of Simulink®, a MATLAB® toolbox which allows for graphical simulation and programming of real-time control systems. The new lab facilities feature dSPACE digital signal processors which are programmed through Simulink®. Each student builds circuits on a breadboard kit which is issued to them.

Subjects

design of mechatronic systems | design of mechatronic systems | mechanical | electrical | and control systems engineering | mechanical | electrical | and control systems engineering | aliasing | aliasing | quantization | quantization | electronic feedback | electronic feedback | power amplifiers | power amplifiers | digital logic | digital logic | encoder interfacing | encoder interfacing | motor control | motor control | Simulink | Simulink | Matlab | Matlab | graphical simulation | graphical simulation | programming | programming | real-time control systems | real-time control systems | dSPACE digital signal processors | dSPACE digital signal processors | circuits | circuits | breadboard kit | breadboard kit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.373 Somatosensory and Motor Systems (MIT)

Description

General principles of motor control in biological systems. Structure and function of sensory receptors. Muscle structure and reflex arcs. Spinal cord. Locomotion. Oculomotor control. Cerebellar structure and function. Motor thalamus. Basal ganglia. Somatosensory cortex: maps and neuronal properties. Cortical plasticity. Motor psychophysics and computational approaches to motor control, and motor planning.

Subjects

locomotion | motor control | biological systems | Structure | function | Muscle structure | reflex | Spinal cord | Oculomotor control | Cerebellar structure | Motor thalamus | Basal ganglia | Somatosensory cortex | Cortical plasticity | Motor psychophysics | motor planning | Locomotion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.05 Neural Basis of Movement (MIT)

Description

Surveys general principles and specific examples of motor control in biological systems. Emphasizes the neural mechanisms underlying different aspects of movement and movement planning. Covers sensory reception, reflex arcs, spinal cord organization, pattern generators, muscle function, locomotion, eye movement, and cognitive aspects of motor control. Functions of central motor structures including cerebellum, basal ganglia, and cerebral cortex considered. Cortical plasticity, motor learning and computational approaches to motor control, and motor disorders are discussed.

Subjects

motor control | neural mechanisms | movement | movement planning | sensory reception | reflex arcs | spinal cord organization | pattern generators | muscle function | locomotion | eye movement | cognitive aspects of motor control | central motor structures | cerebellum | basal ganglia | cerebral cortex | Cortical plasticity | motor learning | computation | motor disorders

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.05 Neural Basis of Movement (MIT)

Description

Surveys general principles and specific examples of motor control in biological systems. Emphasizes the neural mechanisms underlying different aspects of movement and movement planning. Covers sensory reception, reflex arcs, spinal cord organization, pattern generators, muscle function, locomotion, eye movement, and cognitive aspects of motor control. Functions of central motor structures including cerebellum, basal ganglia, and cerebral cortex considered. Cortical plasticity, motor learning and computational approaches to motor control, and motor disorders are discussed.

Subjects

motor control | neural mechanisms | movement | movement planning | sensory reception | reflex arcs | spinal cord organization | pattern generators | muscle function | locomotion | eye movement | cognitive aspects of motor control | central motor structures | cerebellum | basal ganglia | cerebral cortex | Cortical plasticity | motor learning | computation | motor disorders

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.737 Mechatronics (MIT)

Description

This course teaches the design of mechatronic systems which integrate mechanical, electrical, and control systems engineering. A computer hard disk drive is an example of a complex mechatronic system discussed in the class. Laboratories form the core of the course. They cover topics such as aliasing, quantization, electronic feedback, power amplifiers, digital logic, encoder interfacing, and motor control. The labs make extensive use of Simulink®, a MATLAB® toolbox which allows for graphical simulation and programming of real-time control systems. The new lab facilities feature dSPACE digital signal processors which are programmed through Simulink®. Each student builds circuits on a breadboard kit which is issued to them.

Subjects

design of mechatronic systems | mechanical | electrical | and control systems engineering | aliasing | quantization | electronic feedback | power amplifiers | digital logic | encoder interfacing | motor control | Simulink | Matlab | graphical simulation | programming | real-time control systems | dSPACE digital signal processors | circuits | breadboard kit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Neural Basis of Vision and Audition (MIT)

Description

This course examines the neural bases of visual and auditory processing for perception and sensorimotor control, focusing on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are studied.

Subjects

visual processing | auditory processing | perception | sensorimotor control | nervous system | depth perception | auditory responses | speech coding | spatial localization | retina | lateral geniculate nucleus | visual cortex | auditory nerve | Cochlear | brainstem reflexes | sound localization | auditory cortex

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.641J Introduction to Neural Networks (MIT)

Description

This course explores the organization of synaptic connectivity as the basis of neural computation and learning. Perceptrons and dynamical theories of recurrent networks including amplifiers, attractors, and hybrid computation are covered. Additional topics include backpropagation and Hebbian learning, as well as models of perception, motor control, memory, and neural development.

Subjects

synaptic connectivity | computation | learning | multilayer perceptrons | recurrent networks | amplifiers | attractors | hybrid computation | Backpropagation | Hebbian learning | perception | motor control | memory | neural development

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.10 Cognitive Neuroscience (MIT)

Description

This course explores the cognitive and neural processes that support attention, vision, language, motor control, navigation, and memory. It introduces basic neuroanatomy, functional imaging techniques, and behavioral measures of cognition, and discusses methods by which inferences about the brain bases of cognition are made. We consider evidence from patients with neurological diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Balint's syndrome, amnesia, and focal lesions from stroke) and from normal human participants.

Subjects

emphasizing attention | vision | language | motor control | memory | functional imaging techniques | cognition | neurological diseases | Alzheimer's disease | Parkinson's disease | Huntington's disease | Balint's syndrome | amnesia | focal lesions | stroke

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.641J Introduction to Neural Networks (MIT)

Description

This course explores the organization of synaptic connectivity as the basis of neural computation and learning. Perceptrons and dynamical theories of recurrent networks including amplifiers, attractors, and hybrid computation are covered. Additional topics include backpropagation and Hebbian learning, as well as models of perception, motor control, memory, and neural development.

Subjects

synaptic connectivity | computation | learning | multilayer perceptrons | recurrent networks | amplifiers | attractors | hybrid computation | Backpropagation | Hebbian learning | perception | motor control | memory | neural development

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.737 Mechatronics (MIT)

Description

This course teaches the design of mechatronic systems which integrate mechanical, electrical, and control systems engineering. A computer hard disk drive is an example of a complex mechatronic system discussed in the class. Laboratories form the core of the course. They cover topics such as aliasing, quantization, electronic feedback, power amplifiers, digital logic, encoder interfacing, and motor control. The labs make extensive use of Simulink®, a MATLAB® toolbox which allows for graphical simulation and programming of real-time control systems. The new lab facilities feature dSPACE digital signal processors which are programmed through Simulink®. Each student builds circuits on a breadboard kit which is issued to them.

Subjects

design of mechatronic systems | mechanical | electrical | and control systems engineering | aliasing | quantization | electronic feedback | power amplifiers | digital logic | encoder interfacing | motor control | Simulink | Matlab | graphical simulation | programming | real-time control systems | dSPACE digital signal processors | circuits | breadboard kit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.04 Neural Basis of Vision and Audition (MIT)

Description

This course examines the neural bases of visual and auditory processing for perception and sensorimotor control, focusing on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are studied.

Subjects

visual processing | auditory processing | perception | sensorimotor control | nervous system | depth perception | auditory responses | speech coding | spatial localization | retina | lateral geniculate nucleus | visual cortex | auditory nerve | Cochlear | brainstem reflexes | sound localization | auditory cortex

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.10 Cognitive Neuroscience (MIT)

Description

Course topics explore the relations between neural systems and cognition, emphasizing attention, vision, language, motor control, and memory. An introduction to basic neuroanatomy, functional imaging techniques, and behavioral measures of cognition is given with discussion of methods by which inferences about the brain bases of cognition are made. Evidence from patients with neurological diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Balint's syndrome, amnesia, and focal lesions from stroke is given as well as from normal human participants.

Subjects

emphasizing attention | vision | language | motor control | memory | functional imaging techniques | cognition | neurological diseases | Alzheimer's disease | Parkinson's disease | Huntington's disease | Balint's syndrome | amnesia | focal lesions | stroke

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.641J Introduction to Neural Networks (MIT)

Description

Organization of synaptic connectivity as the basis of neural computation and learning. Single and multilayer perceptrons. Dynamical theories of recurrent networks: amplifiers, attractors, and hybrid computation. Backpropagation and Hebbian learning. Models of perception, motor control, memory, and neural development.

Subjects

synaptic connectivity | computation | learning | multilayer perceptrons | recurrent networks | amplifiers | attractors | hybrid computation | Backpropagation | Hebbian learning | perception | motor control | memory | neural development | 9.641 | 8.594

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.10 Cognitive Neuroscience (MIT)

Description

Explores the relations between neural systems and cognition, emphasizing attention, vision, language, motor control, and memory. Introduces basic neuroanatomy, functional imaging techniques, and behavioral measures of cognition. Discusses methods by which inferences about the brain bases of cognition are made. Considers evidence from patients with neurological diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Balint's syndrome, amnesia, and focal lesions from stroke) and from normal human participants. An additional project is required for graduate credit. Alternate years.

Subjects

emphasizing attention | vision | language | motor control | memory | functional imaging techniques | cognition | neurological diseases (Alzheimer's disease) | Parkinson's disease | Huntington's disease | Balint's syndrome | amnesia | focal lesions from stroke

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata