Searching for non-linear : 103 results found | RSS Feed for this search

1 2 3 4

16.888 Multidisciplinary System Design Optimization (MIT) 16.888 Multidisciplinary System Design Optimization (MIT)

Description

This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers. This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers.

Subjects

optimization | optimization | multidisciplinary design optimization | multidisciplinary design optimization | MDO | MDO | subsystem identification | subsystem identification | interface design | interface design | linear constrained optimization fomulation | linear constrained optimization fomulation | non-linear constrained optimization formulation | non-linear constrained optimization formulation | scalar optimization | scalar optimization | vector optimization | vector optimization | systems engineering | systems engineering | complex systems | complex systems | heuristic search methods | heuristic search methods | tabu search | tabu search | simulated annealing | simulated annealing | genertic algorithms | genertic algorithms | sensitivity | sensitivity | tradeoff analysis | tradeoff analysis | goal programming | goal programming | isoperformance | isoperformance | pareto optimality | pareto optimality | flowchart | flowchart | design vector | design vector | simulation model | simulation model | objective vector | objective vector | input | input | discipline | discipline | output | output | coupling | coupling | multiobjective optimization | multiobjective optimization | optimization algorithms | optimization algorithms | tradespace exploration | tradespace exploration | numerical techniques | numerical techniques | direct methods | direct methods | penalty methods | penalty methods | heuristic techniques | heuristic techniques | SA | SA | GA | GA | approximation methods | approximation methods | sensitivity analysis | sensitivity analysis | isoperformace | isoperformace | output evaluation | output evaluation | MSDO framework | MSDO framework

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.053 Introduction to Optimization (MIT) 15.053 Introduction to Optimization (MIT)

Description

15.053 is an undergraduate subject in the theory and practice of optimization. We will consider optimization models with applications to transportation, logistics, manufacturing, computer science, E-business, project management, finance as well as several other domains. This subject will survey some of the applications of optimization as well as heuristics, and we will present algorithms and theory for linear programming, dynamic programming, integer programming, and non-linear programming.One way of summarizing a subject is a lecture by lecture description of the subject, or a description of the methodologies presented in the subject. We do list a lecture by lecture description, but first we describe several cross cutting themes. 15.053 is an undergraduate subject in the theory and practice of optimization. We will consider optimization models with applications to transportation, logistics, manufacturing, computer science, E-business, project management, finance as well as several other domains. This subject will survey some of the applications of optimization as well as heuristics, and we will present algorithms and theory for linear programming, dynamic programming, integer programming, and non-linear programming.One way of summarizing a subject is a lecture by lecture description of the subject, or a description of the methodologies presented in the subject. We do list a lecture by lecture description, but first we describe several cross cutting themes.

Subjects

finance | finance | project management | project management | E-commerce | E-commerce | heuristics | heuristics | non-linear programming | non-linear programming | integer programming | integer programming | dynamic programming | dynamic programming | network optimization | network optimization | linear programming | linear programming

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.171 Analysis and Design of Digital Control Systems (MIT) 2.171 Analysis and Design of Digital Control Systems (MIT)

Description

This course is a comprehensive introduction to control system synthesis in which the digital computer plays a major role, reinforced with hands-on laboratory experience. The course covers elements of real-time computer architecture; input-output interfaces and data converters; analysis and synthesis of sampled-data control systems using classical and modern (state-space) methods; analysis of trade-offs in control algorithms for computation speed and quantization effects. Laboratory projects emphasize practical digital servo interfacing and implementation problems with timing, noise, and nonlinear devices. This course is a comprehensive introduction to control system synthesis in which the digital computer plays a major role, reinforced with hands-on laboratory experience. The course covers elements of real-time computer architecture; input-output interfaces and data converters; analysis and synthesis of sampled-data control systems using classical and modern (state-space) methods; analysis of trade-offs in control algorithms for computation speed and quantization effects. Laboratory projects emphasize practical digital servo interfacing and implementation problems with timing, noise, and nonlinear devices.

Subjects

digital computer | digital computer | computation | computation | real-time computer | real-time computer | input-output | input-output | I/O | I/O | interface | interface | data converter | data converter | A/D converter | A/D converter | sampling | sampling | state-space | state-space | algorithm | algorithm | quantization | quantization | servo | servo | timing | timing | noise | noise | nonlinear | nonlinear | nonlinearity | nonlinearity | non-linear | non-linear

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.977 Ultrafast Optics (MIT) 6.977 Ultrafast Optics (MIT)

Description

This course is offered to graduate students and addresses issues regarding ultrafast optics. Topics covered include: Generation, propagation and applications of ultrashort pulses (nano-, pico-, femto-, attosecond pulses); Linear and nonlinear pulse shaping processes: Optical solitons, Pulse compression; Laser principles: Single- and multi-mode laser dynamics, Q-switching, Active and passive mode-locking; Pulse characterization: Autocorrelation, FROG, SPIDER; Noise in mode-locked lasers and its limitations in measurements; Laser amplifiers, optical parametric amplifiers, and oscillators; Applications in research and industry: Pump-probe techniques, Optical imaging, Frequency metrology, Laser ablation, High harmonic generation. This course is offered to graduate students and addresses issues regarding ultrafast optics. Topics covered include: Generation, propagation and applications of ultrashort pulses (nano-, pico-, femto-, attosecond pulses); Linear and nonlinear pulse shaping processes: Optical solitons, Pulse compression; Laser principles: Single- and multi-mode laser dynamics, Q-switching, Active and passive mode-locking; Pulse characterization: Autocorrelation, FROG, SPIDER; Noise in mode-locked lasers and its limitations in measurements; Laser amplifiers, optical parametric amplifiers, and oscillators; Applications in research and industry: Pump-probe techniques, Optical imaging, Frequency metrology, Laser ablation, High harmonic generation.

Subjects

ultrafast optics | ultrafast optics | generation | generation | propagation | propagation | ultrashort pulses | ultrashort pulses | nanopulses | nanopulses | picopulses | picopulses | femtopulses | femtopulses | attosecond pulses | attosecond pulses | linear | linear | non-linear | non-linear | effects | effects | high precision | high precision | measurements | measurements | nonlinear optics | nonlinear optics | optical signal processing | optical signal processing | optical communications | optical communications | x-ray generation | x-ray generation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.973 Organic Optoelectronics (MIT) 6.973 Organic Optoelectronics (MIT)

Description

The course examines optical and electronic processes in organic molecules and polymers that govern the behavior of practical organic optoelectronic devices. Electronic structure of a single organic molecule is used as a guide to the electronic behavior of organic aggregate structures. Emphasis is placed on the use of organic thin films in active organic devices including organic LEDs, solar cells, photodetectors, transistors, chemical sensors, memory cells, electrochromic devices, as well as xerography and organic non-linear optics. How to reach the ultimate miniaturization limit of molecular electronics and related nanoscale patterning techniques of organic materials will also be discussed. The class encompasses three laboratory sessions during which the students will practice the use of The course examines optical and electronic processes in organic molecules and polymers that govern the behavior of practical organic optoelectronic devices. Electronic structure of a single organic molecule is used as a guide to the electronic behavior of organic aggregate structures. Emphasis is placed on the use of organic thin films in active organic devices including organic LEDs, solar cells, photodetectors, transistors, chemical sensors, memory cells, electrochromic devices, as well as xerography and organic non-linear optics. How to reach the ultimate miniaturization limit of molecular electronics and related nanoscale patterning techniques of organic materials will also be discussed. The class encompasses three laboratory sessions during which the students will practice the use of

Subjects

organic optoelectronics | organic optoelectronics | optical | optical | electronic | electronic | polymers | polymers | organic thin films | organic thin films | organic LEDs | organic LEDs | solar cells | solar cells | photodetectors | photodetectors | transistors | transistors | chemical sensors | chemical sensors | memory cells | memory cells | electrochromic devices | electrochromic devices | xerography | xerography | organic non-linear optics | organic non-linear optics | miniaturization limit | miniaturization limit | molecular electronics | molecular electronics | nanoscale patterning | nanoscale patterning | vacuum organic deposition | vacuum organic deposition | non-vacuum organic deposition | non-vacuum organic deposition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.252J Nonlinear Programming (MIT) 6.252J Nonlinear Programming (MIT)

Description

6.252J is a course in the department's "Communication, Control, and Signal Processing" concentration. This course provides a unified analytical and computational approach to nonlinear optimization problems. The topics covered in this course include: unconstrained optimization methods, constrained optimization methods, convex analysis, Lagrangian relaxation, nondifferentiable optimization, and applications in integer programming. There is also a comprehensive treatment of optimality conditions, Lagrange multiplier theory, and duality theory. Throughout the course, applications are drawn from control, communications, power systems, and resource allocation problems. 6.252J is a course in the department's "Communication, Control, and Signal Processing" concentration. This course provides a unified analytical and computational approach to nonlinear optimization problems. The topics covered in this course include: unconstrained optimization methods, constrained optimization methods, convex analysis, Lagrangian relaxation, nondifferentiable optimization, and applications in integer programming. There is also a comprehensive treatment of optimality conditions, Lagrange multiplier theory, and duality theory. Throughout the course, applications are drawn from control, communications, power systems, and resource allocation problems.

Subjects

nonlinear programming | nonlinear programming | non-linear programming | non-linear programming | nonlinear optimization | nonlinear optimization | unconstrained optimization | unconstrained optimization | gradient | gradient | conjugate direction | conjugate direction | Newton | Newton | quasi-Newton methods | quasi-Newton methods | constrained optimization | constrained optimization | feasible directions | feasible directions | projection | projection | interior point | interior point | Lagrange multiplier | Lagrange multiplier | convex analysis | convex analysis | Lagrangian relaxation | Lagrangian relaxation | nondifferentiable optimization | nondifferentiable optimization | integer programming | integer programming | optimality conditions | optimality conditions | Lagrange multiplier theory | Lagrange multiplier theory | duality theory | duality theory | control | control | communications | communications | power systems | power systems | resource allocation | resource allocation | 6.252 | 6.252 | 15.084 | 15.084

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.066J System Optimization and Analysis for Manufacturing (MIT) 15.066J System Optimization and Analysis for Manufacturing (MIT)

Description

One objective of 15.066J is to introduce modeling, optimization and simulation, as it applies to the study and analysis of manufacturing systems for decision support. The introduction of optimization models and algorithms provide a framework to think about a wide range of issues that arise in manufacturing systems. The second objective is to expose students to a wide range of applications for these methods and models, and to integrate this material with their introduction to operations management. One objective of 15.066J is to introduce modeling, optimization and simulation, as it applies to the study and analysis of manufacturing systems for decision support. The introduction of optimization models and algorithms provide a framework to think about a wide range of issues that arise in manufacturing systems. The second objective is to expose students to a wide range of applications for these methods and models, and to integrate this material with their introduction to operations management.

Subjects

modeling | modeling | optimization | optimization | simulation | simulation | manufacturing systems | manufacturing systems | decision making | decision making | decision support | decision support | probabilistic simulation | probabilistic simulation | designing manufacturing systems | designing manufacturing systems | operations management | operations management | linear programming | linear programming | sensitivity analysis | sensitivity analysis | network flow problems | network flow problems | non-linear programming | non-linear programming | Lagrange multipliers | Lagrange multipliers | integer programming | integer programming | discrete-event simulation | discrete-event simulation | heuristics | heuristics | algorithms | algorithms | 15.066 | 15.066 | 2.851 | 2.851 | 3.83 | 3.83

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.120 Compressible Flow (MIT) 16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear. The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.

Subjects

compressible fluid dynamics | compressible fluid dynamics | fluid dynamics | fluid dynamics | external flows | external flows | internal flows | internal flows | quasi-on-dimensional | quasi-on-dimensional | quasi-1D | quasi-1D | channel flow | channel flow | multi-dimensional flows | multi-dimensional flows | nozzles | nozzles | diffusers | diffusers | inlets | inlets | loss generation | loss generation | interactions | interactions | aerodynamic shapes | aerodynamic shapes | subsonic | subsonic | supersonic | supersonic | transonic | transonic | hypersonic | hypersonic | shock waves | shock waves | vortices | vortices | disturbance behavior | disturbance behavior | unsteady | unsteady | speed of sound | speed of sound | isentropic flows | isentropic flows | non-isentropic flows | non-isentropic flows | potential flows | potential flows | rotational flows | rotational flows | shaft work | shaft work | heat addition | heat addition | mass addition | mass addition | flow states | flow states | flow regime | flow regime | velocity non-uniformities | velocity non-uniformities | density non-uniformities | density non-uniformities | fluid system components | fluid system components | lift | lift | drag | drag | continuum flow | continuum flow | shock strength | shock strength | characteristics | characteristics | governing equations | governing equations | thermodynamic context | thermodynamic context | characteristic parameters | characteristic parameters | quasi-one-dimensional flow | quasi-one-dimensional flow | disturbances | disturbances | unsteady flow | unsteady flow | gas dynamic discontinuities | gas dynamic discontinuities | detonations | detonations | linear two-dimensional flows | linear two-dimensional flows | non-linear two-dimensional flows | non-linear two-dimensional flows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21L.708 Technologies of Humanism (MIT) 21L.708 Technologies of Humanism (MIT)

Description

This course explores the properties of non-sequential, multi-linear, and interactive forms of narratives as they have evolved from print to digital media. Works covered in this course range from the Talmud, classics of non-linear novels, experimental literature, early sound and film experiments to recent multi-linear and interactive films and games. The study of the structural properties of narratives that experiment with digression, multiple points of view, disruptions of time, space, and of storyline is complemented by theoretical texts about authorship/readership, plot/story, properties of digital media and hypertext. Questions that will be addressed in this course include: How can we define ‘non-sequentiality/multi-linearity’, ‘interactivity’, ‘narrative&# This course explores the properties of non-sequential, multi-linear, and interactive forms of narratives as they have evolved from print to digital media. Works covered in this course range from the Talmud, classics of non-linear novels, experimental literature, early sound and film experiments to recent multi-linear and interactive films and games. The study of the structural properties of narratives that experiment with digression, multiple points of view, disruptions of time, space, and of storyline is complemented by theoretical texts about authorship/readership, plot/story, properties of digital media and hypertext. Questions that will be addressed in this course include: How can we define ‘non-sequentiality/multi-linearity’, ‘interactivity’, ‘narrative&#

Subjects

interactive media | interactive media | digital media | digital media | narrative | narrative | non-linear narrative | non-linear narrative | experimental fiction | experimental fiction | point of view | point of view | hypertext | hypertext

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT) ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT)

Description

This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks. This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.

Subjects

ESD.04 | ESD.04 | 1.041 | 1.041 | ESD.01 | ESD.01 | frameworks and models in engineering systems | frameworks and models in engineering systems | quantitative models | quantitative models | qualitative frameworks | qualitative frameworks | complex engineering systems | complex engineering systems | analysis and design | analysis and design | emergent behavior | emergent behavior | stochasticity | stochasticity | non-linearities | non-linearities | architectural system configuration | architectural system configuration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21L.708 Technologies of Humanism (MIT) 21L.708 Technologies of Humanism (MIT)

Description

This course explores the properties of non-sequential, multi-linear, and interactive forms of narratives as they have evolved from print to digital media. Works covered in this course range from the Talmud, classics of non-linear novels, experimental literature, early sound and film experiments to recent multi-linear and interactive films and games. The study of the structural properties of narratives that experiment with digression, multiple points of view, disruptions of time, space, and of storyline is complemented by theoretical texts about authorship/readership, plot/story, properties of digital media and hypertext. Questions that will be addressed in this course include: How can we define ‘non-sequentiality/multi-linearity’, ‘interactivity’, ‘narrative&# This course explores the properties of non-sequential, multi-linear, and interactive forms of narratives as they have evolved from print to digital media. Works covered in this course range from the Talmud, classics of non-linear novels, experimental literature, early sound and film experiments to recent multi-linear and interactive films and games. The study of the structural properties of narratives that experiment with digression, multiple points of view, disruptions of time, space, and of storyline is complemented by theoretical texts about authorship/readership, plot/story, properties of digital media and hypertext. Questions that will be addressed in this course include: How can we define ‘non-sequentiality/multi-linearity’, ‘interactivity’, ‘narrative&#

Subjects

interactive media | interactive media | digital media | digital media | narrative | narrative | non-linear narrative | non-linear narrative | experimental fiction | experimental fiction | point of view | point of view | hypertext | hypertext

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of unsymmetrical flange

Description

This example provides calculations on deviation of linear stress distribution of members based on Eurocode 9.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | non-linear stress distribution | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2401: Fatigue Behaviour and Analysis

Description

This lecture explains why, when and where fatigue problems may arise and the special significance to aluminium as structural material; it helps to understand the effects of material and loading parameters on fatigue; to appreciate the statistical nature of fatigue and its importance in data analysis, evaluation and use; it shows how to estimate fatigue life under service conditions of time-dependent, variable amplitude loading; how to estimate stresses acting in notches and welds with conceptual approaches other than nominal stress; it provides qualitative and quantitative information on the classification of welded details and allow for more sophisticated design procedures. Background in materials engineering, design and fatigue is required.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | design | fatigue | fatigue cracks | susceptibility | cyclic loading | crack growth | crack propagation rate | endurance limit | predictive theories | damage accumulation theories | Manson-Coffin law | crack growth laws | ideal cumulative damage theory | fatigue data analysis | middle-cycle fatigue range | high-cycle fatigue range | fatigue diagrams | linear P-S-N curves | non-linear P-S-N curves | service behaviour | time dependent loads | load spectrum | cycle counting | rain-flow cycle counting method | service behaviour fatigue test | analytical life estimation | damage accumulation | Palmgren-Miner linear damage accumulation hypothesis | strain | fatigue life | notch theory | strain-life diagram | weld imperfections | static strength | fatigue strength | cracks | porosity | inclusions | oxides | lack of penetration | weld shape | lack of fusion | geometric misalignment | arc strike | spatter | post-weld mechanical imperfections | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.973 Organic Optoelectronics (MIT)

Description

The course examines optical and electronic processes in organic molecules and polymers that govern the behavior of practical organic optoelectronic devices. Electronic structure of a single organic molecule is used as a guide to the electronic behavior of organic aggregate structures. Emphasis is placed on the use of organic thin films in active organic devices including organic LEDs, solar cells, photodetectors, transistors, chemical sensors, memory cells, electrochromic devices, as well as xerography and organic non-linear optics. How to reach the ultimate miniaturization limit of molecular electronics and related nanoscale patterning techniques of organic materials will also be discussed. The class encompasses three laboratory sessions during which the students will practice the use of

Subjects

organic optoelectronics | optical | electronic | polymers | organic thin films | organic LEDs | solar cells | photodetectors | transistors | chemical sensors | memory cells | electrochromic devices | xerography | organic non-linear optics | miniaturization limit | molecular electronics | nanoscale patterning | vacuum organic deposition | non-vacuum organic deposition

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.

Subjects

compressible fluid dynamics | fluid dynamics | external flows | internal flows | quasi-on-dimensional | quasi-1D | channel flow | multi-dimensional flows | nozzles | diffusers | inlets | loss generation | interactions | aerodynamic shapes | subsonic | supersonic | transonic | hypersonic | shock waves | vortices | disturbance behavior | unsteady | speed of sound | isentropic flows | non-isentropic flows | potential flows | rotational flows | shaft work | heat addition | mass addition | flow states | flow regime | velocity non-uniformities | density non-uniformities | fluid system components | lift | drag | continuum flow | shock strength | characteristics | governing equations | thermodynamic context | characteristic parameters | quasi-one-dimensional flow | disturbances | unsteady flow | gas dynamic discontinuities | detonations | linear two-dimensional flows | non-linear two-dimensional flows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT)

Description

This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.

Subjects

frameworks and models in engineering systems | quantitative models | qualitative frameworks | complex engineering systems | analysis and design | emergent behavior | stochasticity | non-linearities | architectural system configuration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT)

Description

This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.

Subjects

frameworks and models in engineering systems | quantitative models | qualitative frameworks | complex engineering systems | analysis and design | emergent behavior | stochasticity | non-linearities | architectural system configuration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT)

Description

This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.

Subjects

frameworks and models in engineering systems | quantitative models | qualitative frameworks | complex engineering systems | analysis and design | emergent behavior | stochasticity | non-linearities | architectural system configuration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT)

Description

This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.

Subjects

frameworks and models in engineering systems | quantitative models | qualitative frameworks | complex engineering systems | analysis and design | emergent behavior | stochasticity | non-linearities | architectural system configuration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT)

Description

This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.

Subjects

frameworks and models in engineering systems | quantitative models | qualitative frameworks | complex engineering systems | analysis and design | emergent behavior | stochasticity | non-linearities | architectural system configuration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT)

Description

This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.

Subjects

frameworks and models in engineering systems | quantitative models | qualitative frameworks | complex engineering systems | analysis and design | emergent behavior | stochasticity | non-linearities | architectural system configuration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Electronic engineering : presentation transcript

Description

This open educational resource was released through the Higher Education Academy Engineering Subject Centre Open Engineering Resources Pilot project. The project was funded by HEFCE and the JISC/HE Academy UKOER programme.

Subjects

engsc | university of wales | non-linear devices | newportunioer | thevenins theorem | miller effect | electronic engineering | electronics | hn | frequency | transistors | hybrid parameter network | newport | field effect transistor | equivalent circuits | foundation degree | circuit calculations | 2009 | engscoer | circuit theory | kirchhoffs law | hybrid | bipolar | oer | engineering | eft | beng | high frequency | circuits | ukoer | superposition | hybrid model | bipolar transistor | Engineering | H000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of unsymmetrical flange

Description

This example provides calculations on deviation of linear stress distribution of members based on Eurocode 9.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | product | member | joint | static | non-linear stress distribution | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 2401: Fatigue Behaviour and Analysis

Description

This lecture explains why, when and where fatigue problems may arise and the special significance to aluminium as structural material; it helps to understand the effects of material and loading parameters on fatigue; to appreciate the statistical nature of fatigue and its importance in data analysis, evaluation and use; it shows how to estimate fatigue life under service conditions of time-dependent, variable amplitude loading; how to estimate stresses acting in notches and welds with conceptual approaches other than nominal stress; it provides qualitative and quantitative information on the classification of welded details and allow for more sophisticated design procedures. Background in materials engineering, design and fatigue is required.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | design | fatigue | fatigue cracks | susceptibility | cyclic loading | crack growth | crack propagation rate | endurance limit | predictive theories | damage accumulation theories | manson-coffin law | crack growth laws | ideal cumulative damage theory | fatigue data analysis | middle-cycle fatigue range | high-cycle fatigue range | fatigue diagrams | linear p-s-n curves | non-linear p-s-n curves | service behaviour | time dependent loads | load spectrum | cycle counting | rain-flow cycle counting method | service behaviour fatigue test | analytical life estimation | damage accumulation | palmgren-miner linear damage accumulation hypothesis | strain | fatigue life | notch theory | strain-life diagram | weld imperfections | static strength | fatigue strength | cracks | porosity | inclusions | oxides | lack of penetration | weld shape | lack of fusion | geometric misalignment | arc strike | spatter | post-weld mechanical imperfections | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.04J Frameworks and Models in Engineering Systems / Engineering System Design (MIT)

Description

This class provides an introduction to quantitative models and qualitative frameworks for studying complex engineering systems. Also taught is the art of abstracting a complex system into a model for purposes of analysis and design while dealing with complexity, emergent behavior, stochasticity, non-linearities and the requirements of many stakeholders with divergent objectives. The successful completion of the class requires a semester-long class project that deals with critical contemporary issues which require an integrative, interdisciplinary approach using the above models and frameworks.

Subjects

frameworks and models in engineering systems | quantitative models | qualitative frameworks | complex engineering systems | analysis and design | emergent behavior | stochasticity | non-linearities | architectural system configuration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata