Searching for nonlinear resonances : 4 results found | RSS Feed for this search

Description

12.620J covers the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. The course uses computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration.The following topics are covered: the Lagrangian formulation, action, variational principles, and equations of motion, Hamilton's principle, conserved quantities, rigid bodies and tops, Hamiltonian formulation and canonical equations, surfaces of section, chaos, canonical transformations and generating functions, Liouville's theorem and Poincaré integral invariants, Poincaré-Birkhoff and KAM theorems, invariant curves and cantori, nonlinear resonances, resonance ov 12.620J covers the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. The course uses computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration.The following topics are covered: the Lagrangian formulation, action, variational principles, and equations of motion, Hamilton's principle, conserved quantities, rigid bodies and tops, Hamiltonian formulation and canonical equations, surfaces of section, chaos, canonical transformations and generating functions, Liouville's theorem and Poincaré integral invariants, Poincaré-Birkhoff and KAM theorems, invariant curves and cantori, nonlinear resonances, resonance ovSubjects

classical mechanics | classical mechanics | phase space | phase space | computation | computation | Lagrangian formulation | Lagrangian formulation | action | action | variational principles | variational principles | equations of motion | equations of motion | Hamilton's principle | Hamilton's principle | conserved quantities | conserved quantities | rigid bodies and tops | rigid bodies and tops | Hamiltonian formulation | Hamiltonian formulation | canonical equations | canonical equations | surfaces of section | surfaces of section | chaos | chaos | canonical transformations | canonical transformations | generating functions | generating functions | Liouville's theorem | Liouville's theorem | Poincar? integral invariants | Poincar? integral invariants | Poincar?-Birkhoff | Poincar?-Birkhoff | KAM theorem | KAM theorem | invariant curves | invariant curves | cantori | cantori | nonlinear resonances | nonlinear resonances | resonance overlap | resonance overlap | transition to chaos | transition to chaos | chaotic motion | chaotic motion | 12.620 | 12.620 | 6.946 | 6.946 | 8.351 | 8.351License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.034J Nonlinear Dynamics and Waves (MIT) 2.034J Nonlinear Dynamics and Waves (MIT)

Description

This graduate-level course provides a unified treatment of nonlinear oscillations and wave phenomena with applications to mechanical, optical, geophysical, fluid, electrical and flow-structure interaction problems. This graduate-level course provides a unified treatment of nonlinear oscillations and wave phenomena with applications to mechanical, optical, geophysical, fluid, electrical and flow-structure interaction problems.Subjects

nonlinear oscillations | nonlinear oscillations | wave phenomena | wave phenomena | flow-structure interaction problems | flow-structure interaction problems | nonlinear free and forced vibrations | nonlinear free and forced vibrations | nonlinear resonances | nonlinear resonances | self-excited oscillations | self-excited oscillations | lock-in phenomena | lock-in phenomena | nonlinear dispersive and nondispersive waves | nonlinear dispersive and nondispersive waves | resonant wave interactions | resonant wave interactions | propagation of wave pulses | propagation of wave pulses | nonlinear Schrodinger equation | nonlinear Schrodinger equation | nonlinear long waves and breaking | nonlinear long waves and breaking | theory of characteristics | theory of characteristics | the Korteweg-de Vries equation | the Korteweg-de Vries equation | solitons and solitary wave interactions | solitons and solitary wave interactions | stability of shear flows | stability of shear flowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.620J Classical Mechanics: A Computational Approach (MIT)

Description

12.620J covers the fundamental principles of classical mechanics, with a modern emphasis on the qualitative structure of phase space. The course uses computational ideas to formulate the principles of mechanics precisely. Expression in a computational framework encourages clear thinking and active exploration.The following topics are covered: the Lagrangian formulation, action, variational principles, and equations of motion, Hamilton's principle, conserved quantities, rigid bodies and tops, Hamiltonian formulation and canonical equations, surfaces of section, chaos, canonical transformations and generating functions, Liouville's theorem and Poincaré integral invariants, Poincaré-Birkhoff and KAM theorems, invariant curves and cantori, nonlinear resonances, resonance ovSubjects

classical mechanics | phase space | computation | Lagrangian formulation | action | variational principles | equations of motion | Hamilton's principle | conserved quantities | rigid bodies and tops | Hamiltonian formulation | canonical equations | surfaces of section | chaos | canonical transformations | generating functions | Liouville's theorem | Poincar? integral invariants | Poincar?-Birkhoff | KAM theorem | invariant curves | cantori | nonlinear resonances | resonance overlap | transition to chaos | chaotic motion | 12.620 | 6.946 | 8.351License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.034J Nonlinear Dynamics and Waves (MIT)

Description

This graduate-level course provides a unified treatment of nonlinear oscillations and wave phenomena with applications to mechanical, optical, geophysical, fluid, electrical and flow-structure interaction problems.Subjects

nonlinear oscillations | wave phenomena | flow-structure interaction problems | nonlinear free and forced vibrations | nonlinear resonances | self-excited oscillations | lock-in phenomena | nonlinear dispersive and nondispersive waves | resonant wave interactions | propagation of wave pulses | nonlinear Schrodinger equation | nonlinear long waves and breaking | theory of characteristics | the Korteweg-de Vries equation | solitons and solitary wave interactions | stability of shear flowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata