Searching for nuclear : 215 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9

22.39 Integration of Reactor Design, Operations, and Safety (MIT) 22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations. This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.

Subjects

nuclear reactor | nuclear reactor | nuclear power | nuclear power | NRC | NRC | PWR | PWR | pressurized water reactor | pressurized water reactor | GFR | GFR | LWR | LWR | light water reactor | light water reactor | nuclear safety | nuclear safety | meltdown | meltdown | nuclear risk | nuclear risk | PRA | PRA | probabalistic risk assessment | probabalistic risk assessment | risk assessment | risk assessment | thermal | thermal | hydraulic | hydraulic | nuclear fuel | nuclear fuel | nuclear waste | nuclear waste | accident | accident | radiation radioactivity | radiation radioactivity | nuclear plant | nuclear plant | cooling Seabrook | cooling Seabrook | fission | fission | uranium | uranium | half-life | half-life | plutonium | plutonium | economics of nuclear power | economics of nuclear power | materials slection | materials slection | IRIS | IRIS | materials selection | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.39 Integration of Reactor Design, Operations, and Safety (MIT) 22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.Technical RequirementsSpecial software is required to use some of the files in this course: .exe and .zip. The .in files are input data files. This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.Technical RequirementsSpecial software is required to use some of the files in this course: .exe and .zip. The .in files are input data files.

Subjects

nuclear reactor | nuclear reactor | nuclear power | nuclear power | NRC | NRC | PWR | PWR | pressurized water reactor | pressurized water reactor | GFR | GFR | nuclear safety | nuclear safety | meltdown | meltdown | nuclear risk | nuclear risk | PRA | PRA | probabalistic risk assessment | probabalistic risk assessment | risk assessment | risk assessment | thermal | thermal | hydraulic | hydraulic | nuclear fuel | nuclear fuel | nuclear waste | nuclear waste | accident | accident | radiation | radiation | radioactivity | radioactivity | nuclear plant | nuclear plant | cooling | cooling | seabrook | seabrook | fission | fission | uranium | uranium | half-life | half-life | plutonium | plutonium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.473 The Politics of Nuclear Proliferation: Nuclear History, Strategy, and Statecraft (MIT) 17.473 The Politics of Nuclear Proliferation: Nuclear History, Strategy, and Statecraft (MIT)

Description

This course provides an introduction to the politics and theories surrounding the proliferation of nuclear weapons. It introduces the basics of nuclear weapons, nuclear strategy, and deterrence theory. It also examines the historical record during the Cold War as well as the proliferation of nuclear weapons to regional powers and the resulting deterrence consequences. This course provides an introduction to the politics and theories surrounding the proliferation of nuclear weapons. It introduces the basics of nuclear weapons, nuclear strategy, and deterrence theory. It also examines the historical record during the Cold War as well as the proliferation of nuclear weapons to regional powers and the resulting deterrence consequences.

Subjects

nuclear proliferation | nuclear proliferation | strategy | strategy | statecraft | statecraft | world politics | world politics | global community | global community | nuclear weapons | nuclear weapons | foreign policy | foreign policy | international relations | international relations | rogue states | rogue states | non-state | non-state | deterrence | deterrence | containment | containment | atomic age | atomic age | bomb scare | bomb scare | Second World War | Second World War | Manhattan Project | Manhattan Project | Hiroshima | Hiroshima | nuclear power | nuclear power | nuclear age | nuclear age | nonproliferation | nonproliferation | early Cold War | early Cold War | the Berlin Crisis | the Berlin Crisis | the Cuban Missile Crisis | the Cuban Missile Crisis | Detente | Detente | nuclear arms control | nuclear arms control | nuclear balance | nuclear balance | Euromissile Crisis | Euromissile Crisis | Nuclear Suppliers Group | Nuclear Suppliers Group | parity | parity | Dr. Strangelove | Dr. Strangelove | terrorism | terrorism | global zero | global zero | U.S. policy | U.S. policy | national security | national security | nucelar dynamics | nucelar dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.251 Systems Analysis of the Nuclear Fuel Cycle (MIT) 22.251 Systems Analysis of the Nuclear Fuel Cycle (MIT)

Description

This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing and waste disposal. Also covered are the principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers. This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing and waste disposal. Also covered are the principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers.

Subjects

nuclear fuel | nuclear fuel | nuclear fuel cycle | nuclear fuel cycle | thorium fuel | thorium fuel | dry recycling | dry recycling | transmutation | transmutation | radioactive waste disposal | radioactive waste disposal | waste storage | waste storage | nuclear waste | nuclear waste | nuclear reactor analysis | nuclear reactor analysis | fuel cell design | fuel cell design | reactor design | reactor design | fast reactors | fast reactors | breeder reactors | breeder reactors | CANDU reactor | CANDU reactor | light water reactor | light water reactor | LWR | LWR | nuclear non-proliferation | nuclear non-proliferation | plutonium recycling | plutonium recycling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.02 Introduction to Applied Nuclear Physics (MIT) 22.02 Introduction to Applied Nuclear Physics (MIT)

Description

This class covers basic concepts of nuclear physics with emphasis on nuclear structure and interactions of radiation with matter. Topics include elementary quantum theory; nuclear forces; shell structure of the nucleus; alpha, beta and gamma radioactive decays; interactions of nuclear radiations (charged particles, gammas, and neutrons) with matter; nuclear reactions; fission and fusion. This class covers basic concepts of nuclear physics with emphasis on nuclear structure and interactions of radiation with matter. Topics include elementary quantum theory; nuclear forces; shell structure of the nucleus; alpha, beta and gamma radioactive decays; interactions of nuclear radiations (charged particles, gammas, and neutrons) with matter; nuclear reactions; fission and fusion.

Subjects

radiation | radiation | nuclear structure | nuclear structure | quantum theory | quantum theory | quantum mechanics | quantum mechanics | nuclear reaction | nuclear reaction | nuclear fission | nuclear fission | nuclear fusion | nuclear fusion | radioactive decay | radioactive decay

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.101 Applied Nuclear Physics (MIT) 22.101 Applied Nuclear Physics (MIT)

Description

The topics covered under this course include elements of nuclear physics for engineering students, basic properties of the nucleus and nuclear radiations, quantum mechanical calculations of deuteron bound-state wave function and energy, n-p scattering cross-section, transition probability per unit time and barrier transmission probability. Also explored are binding energy and nuclear stability, interactions of charged particles, neutrons, and gamma rays with matter, radioactive decays, energetics and general cross-section behavior in nuclear reactions. The topics covered under this course include elements of nuclear physics for engineering students, basic properties of the nucleus and nuclear radiations, quantum mechanical calculations of deuteron bound-state wave function and energy, n-p scattering cross-section, transition probability per unit time and barrier transmission probability. Also explored are binding energy and nuclear stability, interactions of charged particles, neutrons, and gamma rays with matter, radioactive decays, energetics and general cross-section behavior in nuclear reactions.

Subjects

Nuclear physics | Nuclear physics | Nuclear reaction | Nuclear reaction | Nucleus | Nucleus | Nuclear radiation | Nuclear radiation | Quantum mechanics | Quantum mechanics | Deuteron bound-state wave function and energy | Deuteron bound-state wave function and energy | n-p scattering cross-section | n-p scattering cross-section | Transition probability per unit time | Transition probability per unit time | Barrier transmission probability | Barrier transmission probability | Binding energy | Binding energy | Nuclear stability | Nuclear stability | Interactions of charged particles neutrons and gamma rays with matter | Interactions of charged particles neutrons and gamma rays with matter | Radioactive decay | Radioactive decay | Energetics | Energetics | nuclear physics | nuclear physics | nuclear reaction | nuclear reaction | nucleus | nucleus | nuclear radiation | nuclear radiation | quantum mechanics | quantum mechanics | deuteron bound-state wave function and energy | deuteron bound-state wave function and energy | transition probability per unit time | transition probability per unit time | barrier transmission probability | barrier transmission probability | nuclear stability | nuclear stability | Interactions of charged particles | Interactions of charged particles | neutrons | neutrons | and gamma rays with matter | and gamma rays with matter | energetics | energetics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.

Subjects

nuclear reactor | nuclear power | NRC | PWR | pressurized water reactor | GFR | LWR | light water reactor | nuclear safety | meltdown | nuclear risk | PRA | probabalistic risk assessment | risk assessment | thermal | hydraulic | nuclear fuel | nuclear waste | accident | radiation radioactivity | nuclear plant | cooling Seabrook | fission | uranium | half-life | plutonium | economics of nuclear power | materials slection | IRIS | materials selection

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.Technical RequirementsSpecial software is required to use some of the files in this course: .exe and .zip. The .in files are input data files.

Subjects

nuclear reactor | nuclear power | NRC | PWR | pressurized water reactor | GFR | nuclear safety | meltdown | nuclear risk | PRA | probabalistic risk assessment | risk assessment | thermal | hydraulic | nuclear fuel | nuclear waste | accident | radiation | radioactivity | nuclear plant | cooling | seabrook | fission | uranium | half-life | plutonium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT) 8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like:How much energy can we really get from wind?How does a solar photovoltaic work?What is an OTEC (Ocean Thermal Energy Converter) and how does it work?What is the physics behind global warming?What makes engines efficient?How does a nuclear reactor work, and what are the realistic hazards?The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.Special note about this course: The Physics of Energy is a new subject at MIT, offered for the first time in the Fall of 2008. The materials for the course, as such, are not yet ready fo This course is designed to give you the scientific understanding you need to answer questions like:How much energy can we really get from wind?How does a solar photovoltaic work?What is an OTEC (Ocean Thermal Energy Converter) and how does it work?What is the physics behind global warming?What makes engines efficient?How does a nuclear reactor work, and what are the realistic hazards?The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.Special note about this course: The Physics of Energy is a new subject at MIT, offered for the first time in the Fall of 2008. The materials for the course, as such, are not yet ready fo

Subjects

energy | energy | solar energy | solar energy | wind energy | wind energy | nuclear energy | nuclear energy | biological energy sources | biological energy sources | thermal energy | thermal energy | eothermal power | eothermal power | ocean thermal energy conversion | ocean thermal energy conversion | hydro power | hydro power | climate change | climate change | energy storage | energy storage | energy conservation | energy conservation | nuclear radiation | nuclear radiation | solar photovoltaic | solar photovoltaic | OTEC | OTEC | nuclear reactor | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.101 Applied Nuclear Physics (MIT) 22.101 Applied Nuclear Physics (MIT)

Description

This subject deals with foundational knowledge for all students in NED. Emphasis is on nuclear concepts (as opposed to traditional nuclear physics), especially nuclear radiations and their interactions with matter. We will study different types of reactions, single-collision phenomena (cross sections) and leave the effects of many collisions to later subjects (22.105 and 22.106). Quantum mechanics is used at a lower level than in 22.51 and 22.106. This subject deals with foundational knowledge for all students in NED. Emphasis is on nuclear concepts (as opposed to traditional nuclear physics), especially nuclear radiations and their interactions with matter. We will study different types of reactions, single-collision phenomena (cross sections) and leave the effects of many collisions to later subjects (22.105 and 22.106). Quantum mechanics is used at a lower level than in 22.51 and 22.106.

Subjects

nuclear concepts | nuclear concepts | nuclear physics | nuclear physics | nuclear radiations | nuclear radiations | matter | matter | types of reactions | types of reactions | single-collision phenomena | single-collision phenomena | cross sections | cross sections | effects of many collisions | effects of many collisions | Quantum mechanics | Quantum mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.951 Nuclear Weapons in International Politics: Past, Present and Future (MIT) 17.951 Nuclear Weapons in International Politics: Past, Present and Future (MIT)

Description

This course will expose students to tools and methods of analysis for use in assessing the challenges and dangers associated with nuclear weapons in international politics. The first two weeks of the course will look at the technology and design of nuclear weapons and their means of production. The next five weeks will look at the role they played in the Cold War, the organizations that managed them, the technologies that were developed to deliver them, and the methods used to analyze nuclear force structures and model nuclear exchanges. The last six weeks of the course will look at theories and cases of nuclear decision making beyond the original five weapon states, and will look particularly at why states pursue or forego nuclear weapons, the role that individuals and institutions play, This course will expose students to tools and methods of analysis for use in assessing the challenges and dangers associated with nuclear weapons in international politics. The first two weeks of the course will look at the technology and design of nuclear weapons and their means of production. The next five weeks will look at the role they played in the Cold War, the organizations that managed them, the technologies that were developed to deliver them, and the methods used to analyze nuclear force structures and model nuclear exchanges. The last six weeks of the course will look at theories and cases of nuclear decision making beyond the original five weapon states, and will look particularly at why states pursue or forego nuclear weapons, the role that individuals and institutions play,

Subjects

nuclear weapons | nuclear weapons | war | war | politics | politics | World War II | World War II | Soviet Union | Soviet Union | Cold War | Cold War | Great Britain | Great Britain | France | France | China | China | India | India | Israel | Israel | Pakistan | Pakistan | North Korea | North Korea | nuclear proliferation | nuclear proliferation | nuclear disarmament | nuclear disarmament | security | security

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT) 8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy. This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.

Subjects

energy | energy | solar energy | solar energy | wind energy | wind energy | nuclear energy | nuclear energy | biological energy sources | biological energy sources | thermal energy | thermal energy | eothermal power | eothermal power | ocean thermal energy conversion | ocean thermal energy conversion | hydro power | hydro power | climate change | climate change | energy storage | energy storage | energy conservation | energy conservation | nuclear radiation | nuclear radiation | solar photovoltaic | solar photovoltaic | OTEC | OTEC | nuclear reactor | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.701 Introduction to Nuclear and Particle Physics (MIT) 8.701 Introduction to Nuclear and Particle Physics (MIT)

Description

The phenomenology and experimental foundations of particle and nuclear physics are explored in this course. Emphasis is on the fundamental forces and particles, as well as composites. The phenomenology and experimental foundations of particle and nuclear physics are explored in this course. Emphasis is on the fundamental forces and particles, as well as composites.

Subjects

QED | QED | Quantum ElectroDynamics | Quantum ElectroDynamics | QFD | QFD | Quantum FlavorDynamics | Quantum FlavorDynamics | QCD | QCD | Quantum ChromoDynamics | Quantum ChromoDynamics | Relativistic Kinematics | Relativistic Kinematics | Accelerators | Accelerators | Detectors | Detectors | Quark Model | Quark Model | Lepton-Nucleon scattering | Lepton-Nucleon scattering | QFT | QFT | Quantum Field Theory | Quantum Field Theory | nuclear physics | nuclear physics | nuclear force | nuclear force | Relativistic heavy-ion physics | Relativistic heavy-ion physics | Particle astrophysics | Particle astrophysics | nuclear astrophysics | nuclear astrophysics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21H.131 America in the Nuclear Age (MIT) 21H.131 America in the Nuclear Age (MIT)

Description

This course examines the American experience at home and abroad from Pearl Harbor to the end of the Cold War. Topics include: America's role as global superpower, foreign and domestic anticommunism, social movements of left and right, suburbanization, and popular culture. This course examines the American experience at home and abroad from Pearl Harbor to the end of the Cold War. Topics include: America's role as global superpower, foreign and domestic anticommunism, social movements of left and right, suburbanization, and popular culture.

Subjects

american history | american history | nuclear | nuclear | world war two | world war two | twentieth century | twentieth century | foreign policy | foreign policy | cold war | cold war | atomic bomb | atomic bomb | military industrial complex | military industrial complex | baby boom | baby boom | social movements | social movements | postwar economy | postwar economy | Pearl Harbor | Pearl Harbor | America's role | America's role | global superpower | global superpower | foreign anticommunism | foreign anticommunism | domestic anticommunism | domestic anticommunism | The Left | The Left | The Right | The Right | suburbanization | suburbanization | popular culture | popular culture | World War II | World War II | WWII | WWII | 20th century | 20th century | nuclear warfare | nuclear warfare | domestic policy | domestic policy | economic abundance | economic abundance | politics | politics | Franklin Delano Roosevelt | Franklin Delano Roosevelt | FDR | FDR | Ronald Reagan | Ronald Reagan | nuclear war | nuclear war | American politics | American politics | economy | economy | society | society

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-21H.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

ESD.10 Introduction to Technology and Policy (MIT) ESD.10 Introduction to Technology and Policy (MIT)

Description

This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and g This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and g

Subjects

Politics | Politics | decision making | decision making | negotiation | negotiation | planning | planning | wedge game | wedge game | climate change | climate change | global warming | global warming | NRC | NRC | nuclear power | nuclear power | nuclear energy | nuclear energy | nuclear proliferation | nuclear proliferation | government | government | public policy | public policy | globalization | globalization | science | science | EPA | EPA | NSF | NSF | transportation | transportation | urban planning | urban planning | standards | standards | risk | risk | risk assessment | risk assessment | engineering | engineering | energy | energy | internet | internet | network neutrality | network neutrality | regulation | regulation | security | security | 9/11 | 9/11 | September 11 | September 11 | terrorism | terrorism | defense | defense | tradeoff | tradeoff

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-ESD.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

RES.8-004 Reducing the Danger of Nuclear Weapons and Proliferation (MIT) RES.8-004 Reducing the Danger of Nuclear Weapons and Proliferation (MIT)

Description

Includes audio/video content: AV lectures. This course, organized as a series of lectures, aims to provide an interdisciplinary view of the history and current climate of nuclear weapons and non-proliferation policy. The first lecture begins the series by discusses nuclear developments in one of the world's most likely nuclear flash points, and the second lecture presents a broad discussion of the dangers of current nuclear weapons policies as well as evaluations of current situations and an outlook for future nuclear weapons reductions. Includes audio/video content: AV lectures. This course, organized as a series of lectures, aims to provide an interdisciplinary view of the history and current climate of nuclear weapons and non-proliferation policy. The first lecture begins the series by discusses nuclear developments in one of the world's most likely nuclear flash points, and the second lecture presents a broad discussion of the dangers of current nuclear weapons policies as well as evaluations of current situations and an outlook for future nuclear weapons reductions.

Subjects

nuclear proliferation | nuclear proliferation | nuclear weapons | nuclear weapons | south asia | south asia | deterrence theory | deterrence theory | india | india | pakistan | pakistan | kargil war | kargil war | operation parakram | operation parakram | nuclear war | nuclear war | abolition | abolition | obama | obama | bomb | bomb | cold war | cold war | escalation | escalation | treaty | treaty | deterrence | deterrence | missiles | missiles | disarmament | disarmament

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.482 U.S. Military Power (MIT) 17.482 U.S. Military Power (MIT)

Description

The purpose of this course is to acquaint the student with the missions, capabilities, and costs of the largely non-nuclear forces that make up the bulk of the U.S. military establishment. The course will also introduce the student to basic techniques for the assessment of relative military capabilities between adversaries in given theaters of military action. Central to the course will be an examination of historical cases of military action that shed light on current defence issues. Many of these cases are recent. The purpose of this course is to acquaint the student with the missions, capabilities, and costs of the largely non-nuclear forces that make up the bulk of the U.S. military establishment. The course will also introduce the student to basic techniques for the assessment of relative military capabilities between adversaries in given theaters of military action. Central to the course will be an examination of historical cases of military action that shed light on current defence issues. Many of these cases are recent.

Subjects

united states | united states | us military | us military | military | military | non-nuclear | non-nuclear | adversaries | adversaries | military action | military action | defense | defense | strategy | strategy | campaign analysis | campaign analysis | airpower | airpower | battle of the bulge | battle of the bulge | intelligence | intelligence | military operations | military operations | naval power | naval power | power projection | power projection | guadalcanal | guadalcanal | desert storm | desert storm | operation iraqi freedom | operation iraqi freedom | afghanistan | iraq | afghanistan | iraq | counter-insurgency | counter-insurgency | humanitarian military intervention | humanitarian military intervention | kosovo | nuclear age | kosovo | nuclear age | nuclear proliferation | nuclear proliferation | american defense planning | american defense planning | ground campaign | ground campaign | air campaign | air campaign | missile targeting | missile targeting | logistics-centric | logistics-centric | limited war | limited war | surface warfare | surface warfare | anti-submarine warfare | anti-submarine warfare | israel/lebanon war | israel/lebanon war | operation allied force | operation allied force | libya | libya

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21H.131 America in the Nuclear Age (MIT) 21H.131 America in the Nuclear Age (MIT)

Description

This course examines the American experience at home and abroad from Pearl Harbor to the end of the Cold War. Topics include: America's role as global superpower, foreign and domestic anticommunism, social movements of left and right, suburbanization, and popular culture. This course examines the American experience at home and abroad from Pearl Harbor to the end of the Cold War. Topics include: America's role as global superpower, foreign and domestic anticommunism, social movements of left and right, suburbanization, and popular culture.

Subjects

american history | american history | nuclear | nuclear | world war two | world war two | twentieth century | twentieth century | foreign policy | foreign policy | cold war | cold war | atomic bomb | atomic bomb | military industrial complex | military industrial complex | baby boom | baby boom | social movements | social movements | postwar economy | postwar economy | Pearl Harbor | Pearl Harbor | America's role | America's role | global superpower | global superpower | foreign anticommunism | foreign anticommunism | domestic anticommunism | domestic anticommunism | The Left | The Left | The Right | The Right | suburbanization | suburbanization | popular culture | popular culture | World War II | World War II | WWII | WWII | 20th century | 20th century | nuclear warfare | nuclear warfare | domestic policy | domestic policy | economic abundance | economic abundance | politics | politics | Franklin Delano Roosevelt | Franklin Delano Roosevelt | FDR | FDR | Ronald Reagan | Ronald Reagan | nuclear war | nuclear war | American politics | American politics | economy | economy | society | society

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-21H.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

17.473 The Politics of Nuclear Proliferation: Nuclear History, Strategy, and Statecraft (MIT)

Description

This course provides an introduction to the politics and theories surrounding the proliferation of nuclear weapons. It introduces the basics of nuclear weapons, nuclear strategy, and deterrence theory. It also examines the historical record during the Cold War as well as the proliferation of nuclear weapons to regional powers and the resulting deterrence consequences.

Subjects

nuclear proliferation | strategy | statecraft | world politics | global community | nuclear weapons | foreign policy | international relations | rogue states | non-state | deterrence | containment | atomic age | bomb scare | Second World War | Manhattan Project | Hiroshima | nuclear power | nuclear age | nonproliferation | early Cold War | the Berlin Crisis | the Cuban Missile Crisis | Detente | nuclear arms control | nuclear balance | Euromissile Crisis | Nuclear Suppliers Group | parity | Dr. Strangelove | terrorism | global zero | U.S. policy | national security | nucelar dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.251 Systems Analysis of the Nuclear Fuel Cycle (MIT)

Description

This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, reprocessing and waste disposal. Also covered are the principles of fuel cycle economics and the applied reactor physics of both contemporary and proposed thermal and fast reactors. Nonproliferation aspects, disposal of excess weapons plutonium, and transmutation of actinides and selected fission products in spent fuel are examined. Several state-of-the-art computer programs are provided for student use in problem sets and term papers.

Subjects

nuclear fuel | nuclear fuel cycle | thorium fuel | dry recycling | transmutation | radioactive waste disposal | waste storage | nuclear waste | nuclear reactor analysis | fuel cell design | reactor design | fast reactors | breeder reactors | CANDU reactor | light water reactor | LWR | nuclear non-proliferation | plutonium recycling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.436 Cold War Science (MIT) STS.436 Cold War Science (MIT)

Description

The history and legacy of the Cold War on science is examined in a seminar setting for this course, looking predominantly at examples in the United States. Topics range from exploring scientists' new political roles after World War II as elite policy-makers in the nuclear age to their victimization by domestic anti-Communism. The course next examines the changing institutions in which the physical, biological, and social sciences were conducted during the postwar decades, investigating the links between institutions and epistemology. The course closes by considering the place of science in the post-Cold-War era. The history and legacy of the Cold War on science is examined in a seminar setting for this course, looking predominantly at examples in the United States. Topics range from exploring scientists' new political roles after World War II as elite policy-makers in the nuclear age to their victimization by domestic anti-Communism. The course next examines the changing institutions in which the physical, biological, and social sciences were conducted during the postwar decades, investigating the links between institutions and epistemology. The course closes by considering the place of science in the post-Cold-War era.

Subjects

cold war | cold war | history of science | history of science | nuclear age | nuclear age | post-cold-war era | post-cold-war era | atomic bomb | atomic bomb | nuclear weapons | nuclear weapons | atom bomb | atom bomb | hydrogen bomb | hydrogen bomb | atomic energy | atomic energy | McCarthyism | McCarthyism | espionage | espionage | anti-communism | anti-communism | soviet union | soviet union | cold war america | cold war america | american science | american science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT) II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs. Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | Junior Lab | experimental | experimental | atomic | atomic | nuclear | nuclear | physics | physics | optics | optics | photoelectric effect | photoelectric effect | poisson | poisson | statistics | statistics | electromagnetic pulse | electromagnetic pulse | compton scattering | compton scattering | Franck-Hertz experiment | Franck-Hertz experiment | relativistic dynamics | relativistic dynamics | nuclear magnetic resonance | nuclear magnetic resonance | spin echoes | spin echoes | cosmic-ray muons | cosmic-ray muons | Rutherford Scattering | Rutherford Scattering | emission spectra | emission spectra | neutron physics | neutron physics | Johnson noise | Johnson noise | shot noise | shot noise | quantum mechanics | quantum mechanics | alpha decay | alpha decay | radio astrophysics | radio astrophysics | Zeeman effect | Zeeman effect | rubidium | rubidium | M?ssbauer | M?ssbauer | spectroscopy | spectroscopy | X-Ray physics | X-Ray physics | superconductivity | superconductivity | Doppler-free | Doppler-free | laser | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT) STS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT)

Description

This class will study some of the changing ideas within modern physics, ranging from relativity theory and quantum mechanics to solid-state physics, nuclear and elementary particles, and cosmology. These ideas will be situated within shifting institutional, cultural, and political contexts. The overall aim is to understand the changing roles of physics and of physicists over the course of the twentieth century. This class will study some of the changing ideas within modern physics, ranging from relativity theory and quantum mechanics to solid-state physics, nuclear and elementary particles, and cosmology. These ideas will be situated within shifting institutional, cultural, and political contexts. The overall aim is to understand the changing roles of physics and of physicists over the course of the twentieth century.

Subjects

relativity theory | relativity theory | quantum mechanics | quantum mechanics | solid-state physics | solid-state physics | elementary particles | elementary particles | quarks | quarks | cosmology | cosmology | nuclear weapons | nuclear weapons | Maxwell | Maxwell | Mach | Mach | Bohr | Bohr | Heisenberg | Heisenberg | McCarthyism | McCarthyism | Poincar? | Poincar? | Schr?dinger | Schr?dinger | nuclear particles | nuclear particles | physics | physics | 20th century | 20th century | twentieth century | twentieth century | physicists | physicists | institutional | political | cultural context | institutional | political | cultural context | STS.042 | STS.042 | 8.225 | 8.225

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.344 The Fountain of Life: From Dolly to Customized Embryonic Stem Cells (MIT) 7.344 The Fountain of Life: From Dolly to Customized Embryonic Stem Cells (MIT)

Description

During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Most differentiated cells therefore retain all of the genetic information necessary to generate an entire organism. It was through pioneering technology of somatic cell nuclear transfer (SCNT) that this concept was experimentally proven. Only 10 years ago the sheep Dolly was the first mammal to be cloned from an adult organism, demonstrating that the differentiated state of a mammalian cell can be fully reversible to a pluripotent embryonic state. A key conclusion from these experiments was that the difference between pluripotent cells such as embryonic stem (ES) cells and unipotent differentiated cells is solely a consequence of reversible changes. These changes, which hav During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Most differentiated cells therefore retain all of the genetic information necessary to generate an entire organism. It was through pioneering technology of somatic cell nuclear transfer (SCNT) that this concept was experimentally proven. Only 10 years ago the sheep Dolly was the first mammal to be cloned from an adult organism, demonstrating that the differentiated state of a mammalian cell can be fully reversible to a pluripotent embryonic state. A key conclusion from these experiments was that the difference between pluripotent cells such as embryonic stem (ES) cells and unipotent differentiated cells is solely a consequence of reversible changes. These changes, which hav

Subjects

embryonic stem cells | embryonic stem cells | stem cells | stem cells | cells | cells | genetics | genetics | genome | genome | Dolly | Dolly | clone | clone | regenerative therapy | regenerative therapy | somatic | somatic | SCNT | SCNT | pluripotent | pluripotent | scientific literature | scientific literature | nuclear | nuclear | embryonic | embryonic | adult | adult | epigenetics | epigenetics | methylation | methylation | DNA | DNA | histone | histone | biomedical | biomedical | differentiation | differentiation | epigenome | epigenome | nuclear transfer | nuclear transfer | customized | customized | zygote | zygote | RNA | RNA | cancer | cancer | medicine | medicine

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT) II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs. Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | Junior Lab | experimental | experimental | atomic | atomic | nuclear | nuclear | physics | physics | optics | optics | photoelectric effect | photoelectric effect | poisson | poisson | statistics | statistics | electromagnetic pulse | electromagnetic pulse | compton scattering | compton scattering | Franck-Hertz experiment | Franck-Hertz experiment | relativistic dynamics | relativistic dynamics | nuclear magnetic resonance | nuclear magnetic resonance | spin echoes | spin echoes | cosmic-ray muons | cosmic-ray muons | Rutherford Scattering | Rutherford Scattering | emission spectra | emission spectra | neutron physics | neutron physics | Johnson noise | Johnson noise | shot noise | shot noise | quantum mechanics | quantum mechanics | alpha decay | alpha decay | radio astrophysics | radio astrophysics | Zeeman effect | Zeeman effect | rubidium | rubidium | M?ssbauer | M?ssbauer | spectroscopy | spectroscopy | X-Ray physics | X-Ray physics | superconductivity | superconductivity | Doppler-free | Doppler-free | laser | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata