Searching for numerical techniques : 81 results found | RSS Feed for this search

Description

This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers. This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers.Subjects

optimization | optimization | multidisciplinary design optimization | multidisciplinary design optimization | MDO | MDO | subsystem identification | subsystem identification | interface design | interface design | linear constrained optimization fomulation | linear constrained optimization fomulation | non-linear constrained optimization formulation | non-linear constrained optimization formulation | scalar optimization | scalar optimization | vector optimization | vector optimization | systems engineering | systems engineering | complex systems | complex systems | heuristic search methods | heuristic search methods | tabu search | tabu search | simulated annealing | simulated annealing | genertic algorithms | genertic algorithms | sensitivity | sensitivity | tradeoff analysis | tradeoff analysis | goal programming | goal programming | isoperformance | isoperformance | pareto optimality | pareto optimality | flowchart | flowchart | design vector | design vector | simulation model | simulation model | objective vector | objective vector | input | input | discipline | discipline | output | output | coupling | coupling | multiobjective optimization | multiobjective optimization | optimization algorithms | optimization algorithms | tradespace exploration | tradespace exploration | numerical techniques | numerical techniques | direct methods | direct methods | penalty methods | penalty methods | heuristic techniques | heuristic techniques | SA | SA | GA | GA | approximation methods | approximation methods | sensitivity analysis | sensitivity analysis | isoperformace | isoperformace | output evaluation | output evaluation | MSDO framework | MSDO frameworkLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.561 Motion Based Design (MIT) 1.561 Motion Based Design (MIT)

Description

This course presents a rational basis for the preliminary design of motion-sensitive structures. Topics covered include: analytical and numerical techniques for establishing the optimal stiffness distribution, the role of damping in controlling motion, tuned mass dampers, base isolation systems, and active structural control. Examples illustrating the application of the motion-based design paradigm to building structures subjected to seismic excitation are discussed. This course presents a rational basis for the preliminary design of motion-sensitive structures. Topics covered include: analytical and numerical techniques for establishing the optimal stiffness distribution, the role of damping in controlling motion, tuned mass dampers, base isolation systems, and active structural control. Examples illustrating the application of the motion-based design paradigm to building structures subjected to seismic excitation are discussed.Subjects

preliminary design | preliminary design | motion-sensitive structures | motion-sensitive structures | analytical techniques | analytical techniques | numerical techniques | numerical techniques | optimal stiffness distribution | optimal stiffness distribution | damping | damping | controlling motion | controlling motion | tuned mass dampers | tuned mass dampers | base isolation systems | base isolation systems | active structural control | active structural control | building structures | building structures | wind excitation | wind excitation | seismic excitation | seismic excitation | building design | building design | numerical analysis | numerical analysis | motion control | motion control | motion-based design | motion-based design | safety | safety | serviceability | serviceability | loadings | loadings | optimal stiffness | optimal stiffness | optimal damping | optimal damping | base isolation | base isolationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for Environm This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | probability | statistics | statistics | events | events | random variables | random variables | univariate distributions | univariate distributions | multivariate distributions | multivariate distributions | uncertainty propagation | uncertainty propagation | Bernoulli trials | Bernoulli trials | Poisson processed | Poisson processed | conditional probability | conditional probability | Bayes rule | Bayes rule | random sampling | random sampling | point estimation | point estimation | interval estimation | interval estimation | hypothesis testing | hypothesis testing | analysis of variance | analysis of variance | linear regression | linear regression | computational analysis | computational analysis | data analysis | data analysis | environmental engineering | environmental engineering | applications | applications | MATLAB | MATLAB | numerical modeling | numerical modeling | probabilistic concepts | probabilistic concepts | statistical methods | statistical methods | field data | field data | laboratory data | laboratory data | numerical techniques | numerical techniques | Monte Carlo simulation | Monte Carlo simulation | variability | variability | sampling | sampling | data sets | data sets | computer | computer | uncertainty | uncertainty | interpretation | interpretation | quantitative data | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.561 Motion Based Design (MIT)

Description

This course presents a rational basis for the preliminary design of motion-sensitive structures. Topics covered include: analytical and numerical techniques for establishing the optimal stiffness distribution, the role of damping in controlling motion, tuned mass dampers, base isolation systems, and active structural control. Examples illustrating the application of the motion-based design paradigm to building structures subjected to seismic excitation are discussed.Subjects

preliminary design | motion-sensitive structures | analytical techniques | numerical techniques | optimal stiffness distribution | damping | controlling motion | tuned mass dampers | base isolation systems | active structural control | building structures | wind excitation | seismic excitation | building design | numerical analysis | motion control | motion-based design | safety | serviceability | loadings | optimal stiffness | optimal damping | base isolationLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata1.017 Computing and Data Analysis for Environmental Applications (MIT)

Description

This subject is a computer-oriented introduction to probability and data analysis. It is designed to give students the knowledge and practical experience they need to interpret lab and field data. Basic probability concepts are introduced at the outset because they provide a systematic way to describe uncertainty. They form the basis for the analysis of quantitative data in science and engineering. The MATLAB® programming language is used to perform virtual experiments and to analyze real-world data sets, many downloaded from the web. Programming applications include display and assessment of data sets, investigation of hypotheses, and identification of possible casual relationships between variables. This is the first semester that two courses, Computing and Data Analysis for EnvironmSubjects

probability | statistics | events | random variables | univariate distributions | multivariate distributions | uncertainty propagation | Bernoulli trials | Poisson processed | conditional probability | Bayes rule | random sampling | point estimation | interval estimation | hypothesis testing | analysis of variance | linear regression | computational analysis | data analysis | environmental engineering | applications | MATLAB | numerical modeling | probabilistic concepts | statistical methods | field data | laboratory data | numerical techniques | Monte Carlo simulation | variability | sampling | data sets | computer | uncertainty | interpretation | quantitative dataLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allthaicourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata