Searching for operational : 65 results found | RSS Feed for this search

1 2 3

12.990 Prediction and Predictability in the Atmosphere and Oceans (MIT) 12.990 Prediction and Predictability in the Atmosphere and Oceans (MIT)

Description

Forecasting is the ultimate form of model validation. But even if a perfect model is in hand, imperfect forecasts are likely. This course will cover the factors that limit our ability to produce good forecasts, will show how the quality of forecasts can be gauged a priori (predicting our ability to predict!), and will cover the state of the art in operational atmosphere and ocean forecasting systems. Forecasting is the ultimate form of model validation. But even if a perfect model is in hand, imperfect forecasts are likely. This course will cover the factors that limit our ability to produce good forecasts, will show how the quality of forecasts can be gauged a priori (predicting our ability to predict!), and will cover the state of the art in operational atmosphere and ocean forecasting systems.

Subjects

Forecasting | Forecasting | model validation | model validation | prediction quality | prediction quality | operational atmosphere and ocean forecasting systems | operational atmosphere and ocean forecasting systems | limiting factors | limiting factors | prediction | prediction | operational atmosphere forecasting systems | operational atmosphere forecasting systems | ocean forecasting systems | ocean forecasting systems | chaos | chaos | probabilistic forecasting | probabilistic forecasting | data assimilation | data assimilation | adaptive observations | adaptive observations | model error | model error | attractors | attractors | dimensions | dimensions | sensitive dependence | sensitive dependence | initial conditions | initial conditions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.761 Operations Management (MIT) 15.761 Operations Management (MIT)

Description

This course will introduce concepts and techniques for design, planning and control of manufacturing and service operations. The course provides basic definitions of operations management terms, tools and techniques for analyzing operations, and strategic context for making operational decisions. We present the material in five modules: Operations Analysis Coordination and Planning Quality Management Project Management Logistics and Supply Chain Management This course will introduce concepts and techniques for design, planning and control of manufacturing and service operations. The course provides basic definitions of operations management terms, tools and techniques for analyzing operations, and strategic context for making operational decisions. We present the material in five modules: Operations Analysis Coordination and Planning Quality Management Project Management Logistics and Supply Chain Management

Subjects

manufacturing | manufacturing | service | service | analyzing operations | analyzing operations | operational decisions | operational decisions | operations analysis | operations analysis | quality management | quality management | project management | project management | logistics | logistics | supply chain management | supply chain management | job shop operations | job shop operations | process matching | process matching | queuing | queuing | forecasting | forecasting | queueing | queueing | analysis | analysis | analyzing | analyzing | operations | operations | coordination | coordination | planning | planning | quality | quality | project | project | management | management | supply chain | supply chain | job shop | job shop | decisions | decisions | decision making | decision making | operational | operational | design | design | control | control | materials | materials | production | production | scheduling | scheduling | reengineering | reengineering | capacity | capacity | facilities | facilities | strategy | strategy | process | process | processes | processes | matching | matching | inventory | inventory | vendor | vendor | customer | customer

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.302 Feedback Systems (MIT) 6.302 Feedback Systems (MIT)

Description

This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modelling and compensation of power coverter systems and phase lock loops. This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modelling and compensation of power coverter systems and phase lock loops.

Subjects

feedback system | feedback system | time-domain performance | time-domain performance | frequency-domain performance | frequency-domain performance | stability | stability | root locus method | root locus method | Nyquist criterion | Nyquist criterion | frequency-domain design | frequency-domain design | compensation techniques | compensation techniques | internal compensation | internal compensation | external compensation | external compensation | operational amplifiers | operational amplifiers | power coverter systems | power coverter systems | phase lock loops | phase lock loops

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.101 Introductory Analog Electronics Laboratory (MIT) 6.101 Introductory Analog Electronics Laboratory (MIT)

Description

6.101 is an introductory electronics laboratory. Students learn about the basic principles of analog circuit design and operation in a practical, real-world laboratory setting. They work both with discrete components such as resistors, capacitors, diodes, and transistors as well as with integrated components such as operational amplifiers. In addition, they become familiar with the operation of basic electronic test equipment (digital multimeters, oscilloscopes, function generators, curve tracers, etc.). There are six labs due weekly which start out as cookbook types and progress to design exercises; there are group design projects for the second half of the term. 6.101 is an introductory electronics laboratory. Students learn about the basic principles of analog circuit design and operation in a practical, real-world laboratory setting. They work both with discrete components such as resistors, capacitors, diodes, and transistors as well as with integrated components such as operational amplifiers. In addition, they become familiar with the operation of basic electronic test equipment (digital multimeters, oscilloscopes, function generators, curve tracers, etc.). There are six labs due weekly which start out as cookbook types and progress to design exercises; there are group design projects for the second half of the term.

Subjects

analog electronics laboratory | analog electronics laboratory | analog circuit design | analog circuit design | resistor | capacitor | resistor | capacitor | diode | diode | transistor | transistor | operational amplifiers | operational amplifiers | electronic test equipment | electronic test equipment | digital multimeter | digital multimeter | oscilloscope | oscilloscope | function generator | function generator | curve tracer | curve tracer | resistor | resistor | capacitor | capacitor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.002 Circuits and Electronics (MIT) 6.002 Circuits and Electronics (MIT)

Description

6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points. 6.002 introduces the fundamentals of the lumped circuit abstraction. Topics covered include: resistive elements and networks; independent and dependent sources; switches and MOS transistors; digital abstraction; amplifiers; energy storage elements; dynamics of first- and second-order networks; design in the time and frequency domains; and analog and digital circuits and applications. Design and lab exercises are also significant components of the course. 6.002 is worth 4 Engineering Design Points.

Subjects

circuit | circuit | electronic | electronic | abstraction | abstraction | lumped circuit | lumped circuit | digital | digital | amplifier | amplifier | differential equations | differential equations | time behavior | time behavior | energy storage | energy storage | semiconductor diode | semiconductor diode | field-effect | field-effect | field-effect transistor | field-effect transistor | resistor | resistor | source | source | inductor | inductor | capacitor | capacitor | diode | diode | series-parallel reduction | series-parallel reduction | voltage | voltage | current divider | current divider | node method | node method | linearity | linearity | superposition | superposition | Thevenin-Norton equivalent | Thevenin-Norton equivalent | power flow | power flow | Boolean algebra | Boolean algebra | binary signal | binary signal | MOSFET | MOSFET | noise margin | noise margin | singularity functions | singularity functions | sinusoidal-steady-state | sinusoidal-steady-state | impedance | impedance | frequency response curves | frequency response curves | operational amplifier | operational amplifier | Op-Amp | Op-Amp | negative feedback | negative feedback | positive feedback | positive feedback

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.885J Aircraft Systems Engineering (MIT) 16.885J Aircraft Systems Engineering (MIT)

Description

Aircraft are complex products comprised of many subsystems which must meet demanding customer and operational lifecycle value requirements. This course adopts a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams "retrospectively analyze" an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Finally, the student teams deliver oral and written versions of the case study. Aircraft are complex products comprised of many subsystems which must meet demanding customer and operational lifecycle value requirements. This course adopts a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams "retrospectively analyze" an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Finally, the student teams deliver oral and written versions of the case study.

Subjects

aircraft systems | aircraft systems | aircraft systems engineering | aircraft systems engineering | lifecycle | lifecycle | cost estimation | cost estimation | weight estimation | weight estimation | aircraft performance | aircraft performance | aircraft safety | aircraft safety | aircraft reliability | aircraft reliability | subsystems; risk analysis | subsystems; risk analysis | risk management | risk management | system realization | system realization | retrospective analysis | retrospective analysis | key design drivers | key design drivers | design drivers | design drivers | design decisions | design decisions | aircraft attributes | aircraft attributes | operational experience | operational experience | case study | case study | case studies | case studies | air transportation systems | air transportation systems | air defense system | air defense system | systems engineering | systems engineering | interface management | interface management | interface verification | interface verification | subsystem architecture | subsystem architecture | performance issures | performance issures | design closure | design closure | complex systems | complex systems | 16.885 | 16.885 | ESD.35 | ESD.35

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

RES.6-010 Electronic Feedback Systems (MIT) RES.6-010 Electronic Feedback Systems (MIT)

Description

Includes audio/video content: AV lectures. Feedback control is an important technique that is used in many modern electronic and electromechanical systems. The successful inclusion of this technique improves performance, reliability, and cost effectiveness of many designs. In this series of lectures we introduce the analytical concepts that underlie classical feedback system design. The application of these concepts is illustrated by a variety of experiments and demonstration systems. The diversity of the demonstration systems reinforces the value of the analytic methods. Includes audio/video content: AV lectures. Feedback control is an important technique that is used in many modern electronic and electromechanical systems. The successful inclusion of this technique improves performance, reliability, and cost effectiveness of many designs. In this series of lectures we introduce the analytical concepts that underlie classical feedback system design. The application of these concepts is illustrated by a variety of experiments and demonstration systems. The diversity of the demonstration systems reinforces the value of the analytic methods.

Subjects

electronic feedback systems | electronic feedback systems | operational amplifiers | operational amplifiers | electromagnetic fields | electromagnetic fields | stability | stability | root locus | root locus | feedback compensation | feedback compensation | nonlinearities | nonlinearities | system dynamics | system dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.885J Aircraft Systems Engineering (MIT) 16.885J Aircraft Systems Engineering (MIT)

Description

Includes audio/video content: AV lectures, AV special element video. 16.885J offers a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams retrospectively analyze an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Oral and written versions of the case study are delivered. For the Fall 2005 term, the class focuses on a systems engineering analysis of the Space Shuttle. It offers study of both design and operations of the shuttle, with frequent lectures by outside experts. Students choose specific s Includes audio/video content: AV lectures, AV special element video. 16.885J offers a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams retrospectively analyze an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Oral and written versions of the case study are delivered. For the Fall 2005 term, the class focuses on a systems engineering analysis of the Space Shuttle. It offers study of both design and operations of the shuttle, with frequent lectures by outside experts. Students choose specific s

Subjects

16.885 | 16.885 | ESD.35 | ESD.35 | aircraft systems | aircraft systems | aircraft systems engineering | aircraft systems engineering | lifecycle | lifecycle | cost estimation | cost estimation | weight estimation | weight estimation | aircraft performance | aircraft performance | aircraft safety | aircraft safety | aircraft reliability | aircraft reliability | subsystems | subsystems | risk analysis | risk analysis | risk management | risk management | system realization | system realization | retrospective analysis | retrospective analysis | key design drivers | key design drivers | design drivers | design drivers | design decisions | design decisions | aircraft attributes | aircraft attributes | operational experience | operational experience | case study | case study | case studies | case studies | air transportation system | air transportation system | air defense system | air defense system | systems engineering | systems engineering | interface management | interface management | interface verification | interface verification | interface validation | interface validation | subsystem architecture | subsystem architecture | performance issues | performance issues | design closure | design closure | complex systems | complex systems | space shuttle | space shuttle | space systems | space systems | NASA | NASA | sound barrier | sound barrier | ascent | ascent | aeronautics | aeronautics | liftoff | liftoff | takeoff | takeoff

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.225J Transportation Flow Systems (MIT) 1.225J Transportation Flow Systems (MIT)

Description

Design, operation, and management of traffic flows over complex transportation networks are the foci of this course. It covers two major topics: traffic flow modeling and traffic flow operations. Sub-topics include deterministic and probabilistic models, elements of queuing theory, and traffic assignment. Concepts are illustrated through various applications and case studies. This is a half-term subject offered during the second half of the semester. Design, operation, and management of traffic flows over complex transportation networks are the foci of this course. It covers two major topics: traffic flow modeling and traffic flow operations. Sub-topics include deterministic and probabilistic models, elements of queuing theory, and traffic assignment. Concepts are illustrated through various applications and case studies. This is a half-term subject offered during the second half of the semester.

Subjects

transportation | transportation | transportation flow systems | transportation flow systems | traffic | traffic | traffic flow | traffic flow | networks | networks | transportation networks | transportation networks | flow modeling | flow modeling | flow operations | flow operations | deteministic models | deteministic models | probabilistic models | probabilistic models | queuing theory | queuing theory | queues | queues | traffic assignment | traffic assignment | case studies | case studies | cumulative plots | cumulative plots | airport runway capacity | airport runway capacity | runway capacity | runway capacity | road traffic | road traffic | shortest paths | shortest paths | optimizations | optimizations | highway control | highway control | ramp metering | ramp metering | simulation models | simulation models | isolated signals | isolated signals | operations | operations | operational problems | operational problems | air traffic operation | air traffic operation | air | air | road | road | component | component | 1.225 | 1.225 | ESD.205 | ESD.205

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.302 Feedback Systems (MIT) 6.302 Feedback Systems (MIT)

Description

This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modeling and compensation of power converter systems, and phase lock loops. This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modeling and compensation of power converter systems, and phase lock loops.

Subjects

feedback system | feedback system | time-domain performance | time-domain performance | frequency-domain performance. stability | frequency-domain performance. stability | root locus method | root locus method | Nyquist criterion | Nyquist criterion | frequency-domain design | frequency-domain design | compensation techniques | compensation techniques | internal compensation | internal compensation | external compensation | external compensation | operational amplifiers | operational amplifiers | power coverter systems | power coverter systems | phase lock loops | phase lock loops

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.821 Programming Languages (MIT) 6.821 Programming Languages (MIT)

Description

6.821 teaches the principles of functional, imperative, and logic programming languages. Topics covered include: meta-circular interpreters, semantics (operational and denotational), type systems (polymorphism, inference, and abstract types), object oriented programming, modules, and multiprocessing. The course involves substantial programming assignments and problem sets as well as a significant amount of reading. The course uses the Scheme+ programming language for all of its assignments. 6.821 teaches the principles of functional, imperative, and logic programming languages. Topics covered include: meta-circular interpreters, semantics (operational and denotational), type systems (polymorphism, inference, and abstract types), object oriented programming, modules, and multiprocessing. The course involves substantial programming assignments and problem sets as well as a significant amount of reading. The course uses the Scheme+ programming language for all of its assignments.

Subjects

Scheme | Scheme | Scheme+ | Scheme+ | programming | programming | programming language | programming language | functional programming language | functional programming language | imperative programming language | imperative programming language | ogic programming languages | ogic programming languages | meta-circular interpreters | meta-circular interpreters | operational semantics | operational semantics | denotational semantics | denotational semantics | type systems | type systems | polymorphism | polymorphism | inference | inference | abstract types | abstract types | object oriented programming | object oriented programming | modules | modules | multiprocessing | multiprocessing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.761 Introduction to Operations Management (MIT) 15.761 Introduction to Operations Management (MIT)

Description

This course provides students with concepts, techniques and tools to design, analyze, and improve core operational capabilities, and apply them to a broad range of application domains and industries. It emphasizes the effect of uncertainty in decision-making, as well as the interplay between high-level financial objectives and operational capabilities. Topics covered include production control, risk pooling, quality management, process design, and revenue management. Also included are case studies, guest lectures, and simulation games which demonstrate central concepts. This course provides students with concepts, techniques and tools to design, analyze, and improve core operational capabilities, and apply them to a broad range of application domains and industries. It emphasizes the effect of uncertainty in decision-making, as well as the interplay between high-level financial objectives and operational capabilities. Topics covered include production control, risk pooling, quality management, process design, and revenue management. Also included are case studies, guest lectures, and simulation games which demonstrate central concepts.

Subjects

process analysis | process analysis | capacity analysis | capacity analysis | innovation | innovation | inventory management | inventory management | production | production | supply chain design | supply chain design | sustainability | sustainability | operational risk | operational risk | quality management | quality management | revenue management | revenue management | pricing | pricing | queuing | queuing | process re-engineering | process re-engineering | Toyota | Toyota | Amazon | Amazon | CVS | CVS | McDonald's | McDonald's | Burger King | Burger King | Hewlett-Packard | Hewlett-Packard | Sport Obermeyer | Sport Obermeyer | Walmart | Walmart

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.764 The Theory of Operations Management (MIT) 15.764 The Theory of Operations Management (MIT)

Description

The doctoral seminar 15.764 focuses on theoretical work for studying operations planning and control problems. This term's special topic, "Customer-Driven Operations," considers how a number of companies have succeeded in focusing their operation systems on the customer. The class reviews the quantitative models and theoretical tools underlying some of the customer-driven operational practices of these cutting-edge companies. Students will read and present research papers on topics such as distribution systems, short life-cycle product management, and forecast evolution models. This MIT OpenCourseWare site is dedicated to the memory of Bhuwan Singh, a member of the class. The doctoral seminar 15.764 focuses on theoretical work for studying operations planning and control problems. This term's special topic, "Customer-Driven Operations," considers how a number of companies have succeeded in focusing their operation systems on the customer. The class reviews the quantitative models and theoretical tools underlying some of the customer-driven operational practices of these cutting-edge companies. Students will read and present research papers on topics such as distribution systems, short life-cycle product management, and forecast evolution models. This MIT OpenCourseWare site is dedicated to the memory of Bhuwan Singh, a member of the class.

Subjects

operations management | operations management | customer-focused operation systems | customer-focused operation systems | customer focus | customer focus | direct-to-consumer business model | direct-to-consumer business model | life-cycle management | life-cycle management | customer-driven operations | customer-driven operations | operational practices | operational practices | distribution systems | distribution systems | customer choice models | customer choice models | assemble-to-order production systems | assemble-to-order production systems | customer service centers | customer service centers | forecast evolution models | forecast evolution models | warehouse systems | warehouse systems | inventory policies | inventory policies | procurement | procurement | managing customer relationships | managing customer relationships | consumer behavior | consumer behavior | short life-cycle production management | short life-cycle production management

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.75J Airline Management (MIT) 16.75J Airline Management (MIT)

Description

This course provides an overview of airline management decision processes with a focus on economic issues and their relationship to operations planning models and decision support tools. It emphasizes the application of economic models of demand, pricing, costs, and supply to airline markets and networks, and it examines industry practice and emerging methods for fleet planning, route network design, scheduling, pricing and revenue management. This course provides an overview of airline management decision processes with a focus on economic issues and their relationship to operations planning models and decision support tools. It emphasizes the application of economic models of demand, pricing, costs, and supply to airline markets and networks, and it examines industry practice and emerging methods for fleet planning, route network design, scheduling, pricing and revenue management.

Subjects

airline economics | airline economics | demand models | demand models | market share | market share | differential pricing | differential pricing | revenues | revenues | airline operating costs | airline operating costs | labor productivity | labor productivity | aircraft productivity | aircraft productivity | demand stochasticity | demand stochasticity | flight leg spill models | flight leg spill models | unconstrained demand | unconstrained demand | load and spill analysis | load and spill analysis | airline schedule development | airline schedule development | passenger choice | passenger choice | decision window | decision window | airline management | airline management | fleet assignment optimization | fleet assignment optimization | route planning | route planning | network strategies | network strategies | operational constraints | operational constraints | scheduling constraints | scheduling constraints | revenue management | revenue management | overbooking | overbooking | seat inventory control | seat inventory control | 16.75 | 16.75 | 1.234 | 1.234

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.885J Aircraft Systems Engineering (MIT) 16.885J Aircraft Systems Engineering (MIT)

Description

Aircraft are complex products comprised of many subsystems which must meet demanding customer and operational lifecycle value requirements. This course adopts a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams "retrospectively analyze" an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Finally, the student teams deliver oral and written versions of the case study. Aircraft are complex products comprised of many subsystems which must meet demanding customer and operational lifecycle value requirements. This course adopts a holistic view of the aircraft as a system, covering: basic systems engineering; cost and weight estimation; basic aircraft performance; safety and reliability; lifecycle topics; aircraft subsystems; risk analysis and management; and system realization. Small student teams "retrospectively analyze" an existing aircraft covering: key design drivers and decisions; aircraft attributes and subsystems; and operational experience. Finally, the student teams deliver oral and written versions of the case study.

Subjects

aircraft systems | aircraft systems | aircraft systems engineering | aircraft systems engineering | lifecycle | lifecycle | cost estimation | cost estimation | weight estimation | weight estimation | aircraft performance | aircraft performance | aircraft safety | aircraft safety | aircraft reliability | aircraft reliability | subsystems; risk analysis | subsystems; risk analysis | risk management | risk management | system realization | system realization | retrospective analysis | retrospective analysis | key design drivers | key design drivers | design drivers | design drivers | design decisions | design decisions | aircraft attributes | aircraft attributes | operational experience | operational experience | case study | case study | case studies | case studies | air transportation systems | air transportation systems | air defense system | air defense system | systems engineering | systems engineering | interface management | interface management | interface verification | interface verification | subsystem architecture | subsystem architecture | performance issures | performance issures | design closure | design closure | complex systems | complex systems | 16.885 | 16.885 | ESD.35 | ESD.35

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.68J Superconducting Magnets (MIT) 22.68J Superconducting Magnets (MIT)

Description

This course focuses on one important engineering application of superconductors -- the generation of large-scale and intense magnetic fields. It includes a review of electromagnetic theory; detailed treatment of magnet design and operational issues, including "usable" superconductors, field and stress analyses, magnet instabilities, ac losses and mechanical disturbances, quench and protection, experimental techniques, and cryogenics. The course also examines new high-temperature superconductors for magnets, as well as design and operational issues at high temperatures. This course focuses on one important engineering application of superconductors -- the generation of large-scale and intense magnetic fields. It includes a review of electromagnetic theory; detailed treatment of magnet design and operational issues, including "usable" superconductors, field and stress analyses, magnet instabilities, ac losses and mechanical disturbances, quench and protection, experimental techniques, and cryogenics. The course also examines new high-temperature superconductors for magnets, as well as design and operational issues at high temperatures.

Subjects

superconductors | superconductors | large-scale and intense magnetic fields | large-scale and intense magnetic fields | electromagnetic theory | electromagnetic theory | magnet design | magnet design | operational issues | operational issues | usable superconductors | usable superconductors | field and stress analyses | field and stress analyses | magnet instabilities | magnet instabilities | ac losses | ac losses | mechanical disturbances | mechanical disturbances | quench | quench | protection | protection | experimental techniques | experimental techniques | cryogenics | cryogenics | high-temperature superconductors for magnets | high-temperature superconductors for magnets | 22.68 | 22.68 | 2.64 | 2.64

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.302 Feedback Systems (MIT) 6.302 Feedback Systems (MIT)

Description

This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modeling and compensation of power converter systems, and phase lock loops. This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modeling and compensation of power converter systems, and phase lock loops.

Subjects

feedback system | feedback system | time-domain performance | time-domain performance | frequency-domain performance. stability | frequency-domain performance. stability | root locus method | root locus method | Nyquist criterion | Nyquist criterion | frequency-domain design | frequency-domain design | compensation techniques | compensation techniques | internal compensation | internal compensation | external compensation | external compensation | operational amplifiers | operational amplifiers | power coverter systems | power coverter systems | phase lock loops | phase lock loops

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Soaring Spaceward Soaring Spaceward

Description

Subjects

aviation | aviation | satellite | satellite | nasa | nasa | goes | goes | rocket | rocket | boeing | boeing | capecanaveral | capecanaveral | itt | itt | aerospace | aerospace | spaceflight | spaceflight | ula | ula | rocketlaunch | rocketlaunch | nationalaeronauticsandspaceadministration | nationalaeronauticsandspaceadministration | deltaiv | deltaiv | lc37b | lc37b | weathersatellite | weathersatellite | lc37 | lc37 | deltarocket | deltarocket | deltaivrocket | deltaivrocket | launchcomplex37 | launchcomplex37 | unitedlaunchalliance | unitedlaunchalliance | slc37 | slc37 | boeingids | boeingids | boeingintegrateddefensesystems | boeingintegrateddefensesystems | goeso | goeso | geostationaryoperationalenvironmentalsatellite | geostationaryoperationalenvironmentalsatellite | boeingdeltaiv | boeingdeltaiv | launchcomplex37b | launchcomplex37b | goes14 | goes14 | slc37b | slc37b | boeingdeltaivrocket | boeingdeltaivrocket | deltaivmedium | deltaivmedium | deltaivm | deltaivm | ittcorporation | ittcorporation | spacelaunchcomplex37 | spacelaunchcomplex37 | spacelaunchcomplex37b | spacelaunchcomplex37b

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.S06 Practical Electronics (MIT) EC.S06 Practical Electronics (MIT)

Description

You can build a wide range of practical electronic devices if you understand a few basic electronics concepts and follow some simple rules. These devices include light-activated and sound-activated toys and appliances, remote controls, timers and clocks, and motorized devices. The subject begins with an overview of the fundamental concepts, followed by a series of laboratory exercises that demonstrate the basic rules, and a final project. You can build a wide range of practical electronic devices if you understand a few basic electronics concepts and follow some simple rules. These devices include light-activated and sound-activated toys and appliances, remote controls, timers and clocks, and motorized devices. The subject begins with an overview of the fundamental concepts, followed by a series of laboratory exercises that demonstrate the basic rules, and a final project.

Subjects

Electronics | Electronics | circuit | circuit | analog circuits | analog circuits | testing circuits | testing circuits | bridge circuits | bridge circuits | passive components | passive components | resistors | resistors | diodes | diodes | capacitors | capacitors | filters | filters | flip-flops | flip-flops | relays | relays | transistors | transistors | switches | switches | rectifiers | rectifiers | function generators | function generators | comparators | comparators | operational amplifiers | operational amplifiers | op-amps | op-amps | timing circuits | timing circuits | sensors | sensors | actuators | actuators | electronics | electronics | SP.764 | SP.764 | SP.765 | SP.765

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.761 Operations Management (MIT)

Description

This course will introduce concepts and techniques for design, planning and control of manufacturing and service operations. The course provides basic definitions of operations management terms, tools and techniques for analyzing operations, and strategic context for making operational decisions. We present the material in five modules: Operations Analysis Coordination and Planning Quality Management Project Management Logistics and Supply Chain Management

Subjects

manufacturing | service | analyzing operations | operational decisions | operations analysis | quality management | project management | logistics | supply chain management | job shop operations | process matching | queuing | forecasting | queueing | analysis | analyzing | operations | coordination | planning | quality | project | management | supply chain | job shop | decisions | decision making | operational | design | control | materials | production | scheduling | reengineering | capacity | facilities | strategy | process | processes | matching | inventory | vendor | customer

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.990 Prediction and Predictability in the Atmosphere and Oceans (MIT)

Description

Forecasting is the ultimate form of model validation. But even if a perfect model is in hand, imperfect forecasts are likely. This course will cover the factors that limit our ability to produce good forecasts, will show how the quality of forecasts can be gauged a priori (predicting our ability to predict!), and will cover the state of the art in operational atmosphere and ocean forecasting systems.

Subjects

Forecasting | model validation | prediction quality | operational atmosphere and ocean forecasting systems | limiting factors | prediction | operational atmosphere forecasting systems | ocean forecasting systems | chaos | probabilistic forecasting | data assimilation | adaptive observations | model error | attractors | dimensions | sensitive dependence | initial conditions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.764 Practical Electronics (MIT)

Description

You can build a wide range of practical electronic devices if you understand a few basic electronics concepts and follow some simple rules. These devices include light-activated and sound-activated toys and appliances, remote controls, timers and clocks, and motorized devices. The subject begins with an overview of the fundamental concepts, followed by a series of laboratory exercises that demonstrate the basic rules, and a final project.

Subjects

Electronics | circuit | analog circuits | testing circuits | bridge circuits | passive components | resistors | diodes | capacitors | filters | flip-flops | relays | transistors | switches | rectifiers | function generators | comparators | operational amplifiers | op-amps | timing circuits | sensors | actuators | electronics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 4104: Application Characteristics

Description

This lecture describes the parameters governing performance of rivet and clinch joints. General mechanical engineering background and familiarity with the subject matter covered in TALAT This lectures 4101- 4103 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | joining | fastening | mechanical | design | riveting | edges | rivet diameters | riveted joint | corrosion prevention | composite joints | clinching tool | strength | operational life | material surface | shear-tensile testing | dynamic reversed loading | geometry | quasi-statically loaded | multiple-point joints | fatigue tests | impact testing | flanged double-C-channels | cost comparison | steel | sheets | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 5203: Anodizing of Aluminium

Description

This lecture describes the process of anodic oxidation of aluminium, which is one of the most unique and commonly used surface treatment techniques for aluminium; it illustrates the weathering behaviour of anodized surfaces. Some familiarity with the subject matter covered in TALAT This lectures 5101- 5104 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | surface treatment | European aluminium consumption | building applications | dimensional effects | anodizing | plating | painting | anodizing cell | anodic coating structure | cell dimensions | anodizing solutions | barrier type electrolytes | porous type electrolytes | film thickness | film weight | changes in current | changes in voltage | electrolyte temperature | current density | acid concentration | colouring anodized aluminium | dying | self colouring | integral colouring | electrolytic colouring | anodic films | sealing | properties | operational sequences | quality control | standards | EWAA - EURAS quality label | QUALANOD | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.302 Feedback Systems (MIT)

Description

This course provides an introduction to the design of feedback systems. Topics covered include: properties and advantages of feedback systems, time-domain and frequency-domain performance measures, stability and degree of stability, root locus method, Nyquist criterion, frequency-domain design, compensation techniques, application to a wide variety of physical systems, internal and external compensation of operational amplifiers, modeling and compensation of power converter systems, and phase lock loops.

Subjects

feedback system | time-domain performance | frequency-domain performance. stability | root locus method | Nyquist criterion | frequency-domain design | compensation techniques | internal compensation | external compensation | operational amplifiers | power coverter systems | phase lock loops

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata