Searching for optical communication : 9 results found | RSS Feed for this search

6.161 Modern Optics Project Laboratory (MIT) 6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 explores modern optics through lectures, laboratory exercises, and projects. Topics covered include: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming properties of lenses, spatial filtering, coherent optical processors, holography, optical properties of materials, lasers, nonlinear optics, electro-optic and acousto-optic materials and devices, optical detectors, fiber optics, and optical communication. This course is worth 12 Engineering Design Points. 6.161 explores modern optics through lectures, laboratory exercises, and projects. Topics covered include: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming properties of lenses, spatial filtering, coherent optical processors, holography, optical properties of materials, lasers, nonlinear optics, electro-optic and acousto-optic materials and devices, optical detectors, fiber optics, and optical communication. This course is worth 12 Engineering Design Points.

Subjects

modern optics lab | modern optics lab | modern optics | modern optics | laboratory | laboratory | polarization | polarization | light | light | reflection | reflection | refraction | refraction | coherence | coherence | interference | interference | Fraunhofer diffraction | Fraunhofer diffraction | Fresnel diffraction | Fresnel diffraction | imaging | imaging | transforming | transforming | lenses | lenses | spatial filtering | spatial filtering | coherent optical processors | coherent optical processors | holography | holography | optical properties of materials | optical properties of materials | lasers | lasers | nonlinear optics | nonlinear optics | electro-optic | electro-optic | acousto-optic | acousto-optic | optical detectors | optical detectors | fiber optics | fiber optics | optical communication | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT) 6.013 Electromagnetics and Applications (MIT)

Description

Includes audio/video content: AV special element video. This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy. Includes audio/video content: AV special element video. This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy.

Subjects

electromagnetics | electromagnetics | electromagnetic fields | electromagnetic fields | electrodynamics | electrodynamics | devices and circuits | devices and circuits | static and quasistatic fields | static and quasistatic fields | electromagnetic forces | electromagnetic forces | actuators | actuators | sensors | sensors | TEM lines | TEM lines | electromagnetic waves | electromagnetic waves | antennas | antennas | radiation | radiation | optical communications | optical communications | acoustics | acoustics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.161 Modern Optics Project Laboratory (MIT) 6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 offers an introduction to laboratory optics, optical principles, and optical devices and systems. This course covers a wide range of topics, including: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, holography, imaging and transforming properties of lenses, spatial filtering, two-lens coherent optical processor, optical properties of materials, lasers, electro-optic, acousto-optic and liquid-crystal light modulators, optical detectors, optical waveguides and fiber-optic communication systems. Students engage in extensive oral and written communication exercises. There are 12 engineering design points associated with this subject. 6.161 offers an introduction to laboratory optics, optical principles, and optical devices and systems. This course covers a wide range of topics, including: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, holography, imaging and transforming properties of lenses, spatial filtering, two-lens coherent optical processor, optical properties of materials, lasers, electro-optic, acousto-optic and liquid-crystal light modulators, optical detectors, optical waveguides and fiber-optic communication systems. Students engage in extensive oral and written communication exercises. There are 12 engineering design points associated with this subject.

Subjects

modern optics lab | modern optics lab | modern optics | modern optics | laboratory | laboratory | polarization | polarization | light | light | reflection | reflection | refraction | refraction | coherence | coherence | interference | interference | Fraunhofer diffraction | Fraunhofer diffraction | Fresnel diffraction | Fresnel diffraction | imaging | imaging | transforming | transforming | lenses | lenses | spatial filtering | spatial filtering | coherent optical processors | coherent optical processors | holography | holography | optical properties of materials | optical properties of materials | lasers | lasers | nonlinear optics | nonlinear optics | electro-optic | electro-optic | acousto-optic | acousto-optic | optical detectors | optical detectors | fiber optics | fiber optics | optical communication | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.977 Ultrafast Optics (MIT) 6.977 Ultrafast Optics (MIT)

Description

This course is offered to graduate students and addresses issues regarding ultrafast optics. Topics covered include: Generation, propagation and applications of ultrashort pulses (nano-, pico-, femto-, attosecond pulses); Linear and nonlinear pulse shaping processes: Optical solitons, Pulse compression; Laser principles: Single- and multi-mode laser dynamics, Q-switching, Active and passive mode-locking; Pulse characterization: Autocorrelation, FROG, SPIDER; Noise in mode-locked lasers and its limitations in measurements; Laser amplifiers, optical parametric amplifiers, and oscillators; Applications in research and industry: Pump-probe techniques, Optical imaging, Frequency metrology, Laser ablation, High harmonic generation. This course is offered to graduate students and addresses issues regarding ultrafast optics. Topics covered include: Generation, propagation and applications of ultrashort pulses (nano-, pico-, femto-, attosecond pulses); Linear and nonlinear pulse shaping processes: Optical solitons, Pulse compression; Laser principles: Single- and multi-mode laser dynamics, Q-switching, Active and passive mode-locking; Pulse characterization: Autocorrelation, FROG, SPIDER; Noise in mode-locked lasers and its limitations in measurements; Laser amplifiers, optical parametric amplifiers, and oscillators; Applications in research and industry: Pump-probe techniques, Optical imaging, Frequency metrology, Laser ablation, High harmonic generation.

Subjects

ultrafast optics | ultrafast optics | generation | generation | propagation | propagation | ultrashort pulses | ultrashort pulses | nanopulses | nanopulses | picopulses | picopulses | femtopulses | femtopulses | attosecond pulses | attosecond pulses | linear | linear | non-linear | non-linear | effects | effects | high precision | high precision | measurements | measurements | nonlinear optics | nonlinear optics | optical signal processing | optical signal processing | optical communications | optical communications | x-ray generation | x-ray generation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy.

Subjects

electromagnetics | electromagnetic fields | electrodynamics | devices and circuits | static and quasistatic fields | electromagnetic forces | actuators | sensors | TEM lines | electromagnetic waves | antennas | radiation | optical communications | acoustics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 explores modern optics through lectures, laboratory exercises, and projects. Topics covered include: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, imaging and transforming properties of lenses, spatial filtering, coherent optical processors, holography, optical properties of materials, lasers, nonlinear optics, electro-optic and acousto-optic materials and devices, optical detectors, fiber optics, and optical communication. This course is worth 12 Engineering Design Points.

Subjects

modern optics lab | modern optics | laboratory | polarization | light | reflection | refraction | coherence | interference | Fraunhofer diffraction | Fresnel diffraction | imaging | transforming | lenses | spatial filtering | coherent optical processors | holography | optical properties of materials | lasers | nonlinear optics | electro-optic | acousto-optic | optical detectors | fiber optics | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.013 Electromagnetics and Applications (MIT)

Description

This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy.

Subjects

electromagnetics | electromagnetic fields | electrodynamics | devices and circuits | static and quasistatic fields | electromagnetic forces | actuators | sensors | TEM lines | electromagnetic waves | antennas | radiation | optical communications | acoustics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.161 Modern Optics Project Laboratory (MIT)

Description

6.161 offers an introduction to laboratory optics, optical principles, and optical devices and systems. This course covers a wide range of topics, including: polarization properties of light, reflection and refraction, coherence and interference, Fraunhofer and Fresnel diffraction, holography, imaging and transforming properties of lenses, spatial filtering, two-lens coherent optical processor, optical properties of materials, lasers, electro-optic, acousto-optic and liquid-crystal light modulators, optical detectors, optical waveguides and fiber-optic communication systems. Students engage in extensive oral and written communication exercises. There are 12 engineering design points associated with this subject.

Subjects

modern optics lab | modern optics | laboratory | polarization | light | reflection | refraction | coherence | interference | Fraunhofer diffraction | Fresnel diffraction | imaging | transforming | lenses | spatial filtering | coherent optical processors | holography | optical properties of materials | lasers | nonlinear optics | electro-optic | acousto-optic | optical detectors | fiber optics | optical communication

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.977 Ultrafast Optics (MIT)

Description

This course is offered to graduate students and addresses issues regarding ultrafast optics. Topics covered include: Generation, propagation and applications of ultrashort pulses (nano-, pico-, femto-, attosecond pulses); Linear and nonlinear pulse shaping processes: Optical solitons, Pulse compression; Laser principles: Single- and multi-mode laser dynamics, Q-switching, Active and passive mode-locking; Pulse characterization: Autocorrelation, FROG, SPIDER; Noise in mode-locked lasers and its limitations in measurements; Laser amplifiers, optical parametric amplifiers, and oscillators; Applications in research and industry: Pump-probe techniques, Optical imaging, Frequency metrology, Laser ablation, High harmonic generation.

Subjects

ultrafast optics | generation | propagation | ultrashort pulses | nanopulses | picopulses | femtopulses | attosecond pulses | linear | non-linear | effects | high precision | measurements | nonlinear optics | optical signal processing | optical communications | x-ray generation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata