Searching for parallel computing : 11 results found | RSS Feed for this search

6.046J Introduction to Algorithms (SMA 5503) (MIT) 6.046J Introduction to Algorithms (SMA 5503) (MIT)

Description

This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms). This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms).

Subjects

algorithms | algorithms | efficient algorithms | efficient algorithms | sorting | sorting | search trees | search trees | heaps | heaps | hashing | hashing | divide-and-conquer | divide-and-conquer | dynamic programming | dynamic programming | amortized analysis | amortized analysis | graph algorithms | graph algorithms | shortest paths | shortest paths | network flow | network flow | computational geometry | computational geometry | number-theoretic algorithms | number-theoretic algorithms | polynomial and matrix calculations | polynomial and matrix calculations | caching | caching | parallel computing | parallel computing | SMA 5503 | SMA 5503 | 6.046 | 6.046

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.046J Introduction to Algorithms (MIT) 6.046J Introduction to Algorithms (MIT)

Description

This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing. This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.

Subjects

algorithms | algorithms | efficient algorithms | efficient algorithms | sorting | sorting | search trees | search trees | heaps | heaps | hashing | hashing | divide-and-conquer | divide-and-conquer | dynamic programming | dynamic programming | amortized analysis | amortized analysis | graph algorithms | graph algorithms | shortest paths | shortest paths | network flow | network flow | computational geometry | computational geometry | number-theoretic algorithms | number-theoretic algorithms | polynomial and matrix calculations | polynomial and matrix calculations | caching | caching | parallel computing | parallel computing | 6.046 | 6.046 | 18.410 | 18.410

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.046J Introduction to Algorithms (SMA 5503) (MIT) 6.046J Introduction to Algorithms (SMA 5503) (MIT)

Description

Includes audio/video content: AV lectures. This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms). Includes audio/video content: AV lectures. This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms).

Subjects

algorithms | algorithms | efficient algorithms | efficient algorithms | sorting | sorting | search trees | search trees | heaps | heaps | hashing | hashing | divide-and-conquer | divide-and-conquer | dynamic programming | dynamic programming | amortized analysis | amortized analysis | graph algorithms | graph algorithms | shortest paths | shortest paths | network flow | network flow | computational geometry | computational geometry | number-theoretic algorithms | number-theoretic algorithms | polynomial and matrix calculations | polynomial and matrix calculations | caching | caching | parallel computing | parallel computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.895 Theory of Parallel Systems (SMA 5509) (MIT) 6.895 Theory of Parallel Systems (SMA 5509) (MIT)

Description

6.895 covers theoretical foundations of general-purpose parallel computing systems, from languages to architecture. The focus is on the algorithmic underpinnings of parallel systems. The topics for the class will vary depending on student interest, but will likely include multithreading, synchronization, race detection, load balancing, memory consistency, routing networks, message-routing algorithms, and VLSI layout theory. The class will emphasize randomized algorithms and probabilistic analysis, including high-probability arguments. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5509 (Theory of Parallel Systems). 6.895 covers theoretical foundations of general-purpose parallel computing systems, from languages to architecture. The focus is on the algorithmic underpinnings of parallel systems. The topics for the class will vary depending on student interest, but will likely include multithreading, synchronization, race detection, load balancing, memory consistency, routing networks, message-routing algorithms, and VLSI layout theory. The class will emphasize randomized algorithms and probabilistic analysis, including high-probability arguments. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5509 (Theory of Parallel Systems).

Subjects

parallel systems | parallel systems | parallel computing | parallel computing | algorithms | algorithms | multithreading | multithreading | synchronization | synchronization | race detection | race detection | load balancing | load balancing | memory consistency | memory consistency | routing networks | routing networks | message-routing algorithms | message-routing algorithms | VLSI layout theory | VLSI layout theory | randomized algorithms | randomized algorithms | probabilistic analysis | probabilistic analysis | high-probability arguments | high-probability arguments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.046J Introduction to Algorithms (SMA 5503) (MIT)

Description

This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms).

Subjects

algorithms | efficient algorithms | sorting | search trees | heaps | hashing | divide-and-conquer | dynamic programming | amortized analysis | graph algorithms | shortest paths | network flow | computational geometry | number-theoretic algorithms | polynomial and matrix calculations | caching | parallel computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allkoreancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EEE4084F Digital Systems

Description

Authors:  Simon Winberg The objective of this course is for students to develop an understanding of the concepts involved in the design and development of high performance and special-purpose digital computing systems, in te Clicked 118 times. Last clicked 07/27/2014 - 11:34. Teaching & Learning Context:  The course involves lectures in a standard lecture venue. Projects and pracs are done using computers and other hardware in a laboratory. Presentation slides and the assignments are available on the publicly accessible website for this course. Correspondence and assistance with assignments are provid

Subjects

Electrical Engineering | Engineering and the Built Environment | Downloadable Documents | Other | Text/HTML Webpages | Video | English | Post-secondary | digital systems | FPGA | HDL | high performance computing | parallel computing | VLSI

License

http://creativecommons.org/licenses/by/2.5/za/

Site sourced from

http://opencontent.uct.ac.za/recent-posts/feed.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Parallel and Multicore Computing

Description

Authors:  M.Kuttel Lectures slides from the 15 lecture Parallel And Multicore Computing module presented to the Computer Science Honours class (=4th year). Clicked 628 times. Last clicked 01/27/2015 - 18:28. Teaching & Learning Context:  High Performance Computing (HPC) is becoming increasingly important, not only for large “Grand Challenge” problems in computational science, but for effective software development in the multicore era. Parallel computers are increasingly prevalent, ranging from GPU accelerators, through multi-core architectures to large supercomputing centres. However, knowledge

Subjects

Computer Science | Science | Downloadable Documents | Lecture Notes | English | Post-secondary | computer science | high performance computing | information technology | parallel computing

License

http://creativecommons.org/licenses/by-nc/2.5/za/

Site sourced from

http://opencontent.uct.ac.za/recent-posts/feed.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.046J Introduction to Algorithms (SMA 5503) (MIT)

Description

This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms).

Subjects

algorithms | efficient algorithms | sorting | search trees | heaps | hashing | divide-and-conquer | dynamic programming | amortized analysis | graph algorithms | shortest paths | network flow | computational geometry | number-theoretic algorithms | polynomial and matrix calculations | caching | parallel computing | SMA 5503 | 6.046

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.046J Introduction to Algorithms (MIT)

Description

This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.

Subjects

algorithms | efficient algorithms | sorting | search trees | heaps | hashing | divide-and-conquer | dynamic programming | amortized analysis | graph algorithms | shortest paths | network flow | computational geometry | number-theoretic algorithms | polynomial and matrix calculations | caching | parallel computing | 6.046 | 18.410

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.046J Introduction to Algorithms (SMA 5503) (MIT)

Description

This course teaches techniques for the design and analysis of efficient algorithms, emphasizing methods useful in practice. Topics covered include: sorting; search trees, heaps, and hashing; divide-and-conquer; dynamic programming; amortized analysis; graph algorithms; shortest paths; network flow; computational geometry; number-theoretic algorithms; polynomial and matrix calculations; caching; and parallel computing.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5503 (Analysis and Design of Algorithms).

Subjects

algorithms | efficient algorithms | sorting | search trees | heaps | hashing | divide-and-conquer | dynamic programming | amortized analysis | graph algorithms | shortest paths | network flow | computational geometry | number-theoretic algorithms | polynomial and matrix calculations | caching | parallel computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.895 Theory of Parallel Systems (SMA 5509) (MIT)

Description

6.895 covers theoretical foundations of general-purpose parallel computing systems, from languages to architecture. The focus is on the algorithmic underpinnings of parallel systems. The topics for the class will vary depending on student interest, but will likely include multithreading, synchronization, race detection, load balancing, memory consistency, routing networks, message-routing algorithms, and VLSI layout theory. The class will emphasize randomized algorithms and probabilistic analysis, including high-probability arguments. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5509 (Theory of Parallel Systems).

Subjects

parallel systems | parallel computing | algorithms | multithreading | synchronization | race detection | load balancing | memory consistency | routing networks | message-routing algorithms | VLSI layout theory | randomized algorithms | probabilistic analysis | high-probability arguments

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata