Searching for partial differential equations : 45 results found | RSS Feed for this search

1 2

18.156 Differential Analysis (MIT) 18.156 Differential Analysis (MIT)

Description

The main goal of this course is to give the students a solid foundation in the theory of elliptic and parabolic linear partial differential equations. It is the second semester of a two-semester, graduate-level sequence on Differential Analysis. The main goal of this course is to give the students a solid foundation in the theory of elliptic and parabolic linear partial differential equations. It is the second semester of a two-semester, graduate-level sequence on Differential Analysis.

Subjects

Sobolev spaces | Sobolev spaces | Fredholm alternative | Fredholm alternative | Variable coefficient elliptic | parabolic and hyperbolic linear partial differential equations | Variable coefficient elliptic | parabolic and hyperbolic linear partial differential equations | Variational methods | Variational methods | Viscosity solutions of fully nonlinear partial differential equations | Viscosity solutions of fully nonlinear partial differential equations | Schauder theory | Schauder theory | Holder estimates | Holder estimates | linear equations | linear equations | second derivatives | second derivatives | elliptic | elliptic | parabolic | parabolic | nonlinear partial differential equations | nonlinear partial differential equations | linear partial differential equations | linear partial differential equations | harmonic functions | harmonic functions | elliptic equations | elliptic equations | parabolic equations | parabolic equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.156 Differential Analysis (MIT)

Description

The main goal of this course is to give the students a solid foundation in the theory of elliptic and parabolic linear partial differential equations. It is the second semester of a two-semester, graduate-level sequence on Differential Analysis.

Subjects

Sobolev spaces | Fredholm alternative | Variable coefficient elliptic | parabolic and hyperbolic linear partial differential equations | Variational methods | Viscosity solutions of fully nonlinear partial differential equations | Schauder theory | Holder estimates | linear equations | second derivatives | elliptic | parabolic | nonlinear partial differential equations | linear partial differential equations | harmonic functions | elliptic equations | parabolic equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.29 Numerical Fluid Mechanics (MIT) 2.29 Numerical Fluid Mechanics (MIT)

Description

This course introduces students to MATLAB®. Numerical methods include number representation and errors, interpolation, differentiation, integration, systems of linear equations, and Fourier interpolation and transforms. Students will study partial and ordinary differential equations as well as elliptic and parabolic differential equations, and solutions by numerical integration, finite difference methods, finite element methods, boundary element methods, and panel methods. This course introduces students to MATLAB®. Numerical methods include number representation and errors, interpolation, differentiation, integration, systems of linear equations, and Fourier interpolation and transforms. Students will study partial and ordinary differential equations as well as elliptic and parabolic differential equations, and solutions by numerical integration, finite difference methods, finite element methods, boundary element methods, and panel methods.

Subjects

numerical methods | numerical methods | interpolation | interpolation | integration | integration | systems of linear equations | systems of linear equations | differential equations | differential equations | numerical integration | numerical integration | partial differential equations of inviscid hydrodynamics | partial differential equations of inviscid hydrodynamics | finite difference methods | finite difference methods | boundary integral equation panel methods | boundary integral equation panel methods | numerical lifting surface computations | numerical lifting surface computations | Fast Fourier Transforms | Fast Fourier Transforms | Numerical representation | Numerical representation | deterministic and random sea waves | deterministic and random sea waves | Integral boundary layer equations | Integral boundary layer equations | numerical solutions | numerical solutions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.306 Advanced Partial Differential Equations with Applications (MIT) 18.306 Advanced Partial Differential Equations with Applications (MIT)

Description

This course presents the concepts and techniques for solving partial differential equations (pde), with emphasis on nonlinear pde. This course presents the concepts and techniques for solving partial differential equations (pde), with emphasis on nonlinear pde.

Subjects

partial differential equations (pde) | partial differential equations (pde) | nonlinear pde | nonlinear pde | Diffusion | Diffusion | dispersion | dispersion | Initial and boundary value problems | Initial and boundary value problems | Characteristics and shocks | Characteristics and shocks | Separation of variables | Separation of variables | transform methods | transform methods | Green's functions | Green's functions | Asymptotics | Asymptotics | geometrical theory | geometrical theory | Dimensional analysis | Dimensional analysis | self-similarity | self-similarity | traveling waves | traveling waves | Singular perturbation and boundary layers | Singular perturbation and boundary layers | Solitons | Solitons | Variational methods | Variational methods | Free-boundary problems | Free-boundary problems | fluid dynamics | fluid dynamics | electrical engineering | electrical engineering | mechanical engineering | mechanical engineering | materials science | materials science | quantum mechanics | quantum mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.901 Computational Methods in Aerospace Engineering (MIT) 16.901 Computational Methods in Aerospace Engineering (MIT)

Description

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.Technical RequirementsMATLAB® software is required to run the .m and .mat files found on this course site.MATLAB® is a trademark of The MathWorks, Inc. This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.Technical RequirementsMATLAB® software is required to run the .m and .mat files found on this course site.MATLAB® is a trademark of The MathWorks, Inc.

Subjects

numerical integration | numerical integration | ODEs | ODEs | ordinary differential equations | ordinary differential equations | finite difference | finite difference | finite volume | finite volume | finite element | finite element | discretization | discretization | PDEs | PDEs | partial differential equations | partial differential equations | numerical linear algebra | numerical linear algebra | probabilistic methods | probabilistic methods | optimization | optimization | omputational methods | omputational methods | aerospace engineering | aerospace engineering | computational methods | computational methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

13.024 Numerical Marine Hydrodynamics (MIT) 13.024 Numerical Marine Hydrodynamics (MIT)

Description

This course is an introduction to numerical methods: interpolation, differentiation, integration, and systems of linear equations. It covers the solution of differential equations by numerical integration, as well as partial differential equations of inviscid hydrodynamics: finite difference methods, boundary integral equation panel methods. Also addressed are introductory numerical lifting surface computations, fast Fourier transforms, the numerical representation of deterministic and random sea waves, as well as integral boundary layer equations and numerical solutions.Technical RequirementMATLAB® software is required to run the .m files found on this course site. The .FIN and .OUT are simply data offest tables. They can be viewed with any text reader. RealOne™ This course is an introduction to numerical methods: interpolation, differentiation, integration, and systems of linear equations. It covers the solution of differential equations by numerical integration, as well as partial differential equations of inviscid hydrodynamics: finite difference methods, boundary integral equation panel methods. Also addressed are introductory numerical lifting surface computations, fast Fourier transforms, the numerical representation of deterministic and random sea waves, as well as integral boundary layer equations and numerical solutions.Technical RequirementMATLAB® software is required to run the .m files found on this course site. The .FIN and .OUT are simply data offest tables. They can be viewed with any text reader. RealOne™

Subjects

numerical methods | numerical methods | interpolation | interpolation | differentiation | differentiation | integration | integration | systems of linear equations | systems of linear equations | differential equations | differential equations | numerical integration | numerical integration | partial differential | partial differential | boundary integral equation panel methods | boundary integral equation panel methods | deterministic and random sea waves | deterministic and random sea waves | Fast Fourier Transforms | Fast Fourier Transforms | finite difference methods | finite difference methods | Integral boundary layer equations | Integral boundary layer equations | numerical lifting surface computations | numerical lifting surface computations | Numerical representation | Numerical representation | numerical solutions | numerical solutions | partial differential equations of inviscid hydrodynamics | partial differential equations of inviscid hydrodynamics | incompressible fluid mechanics | incompressible fluid mechanics | calculus | calculus | complex numbers | complex numbers | root finding | root finding | curve fitting | curve fitting | numerical differentiation | numerical differentiation | numerical errors | numerical errors | panel methods | panel methods | oscillating rigid objects | oscillating rigid objects | 2.29 | 2.29

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.016 Mathematics for Materials Scientists and Engineers (MIT) 3.016 Mathematics for Materials Scientists and Engineers (MIT)

Description

The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site. The class will cover mathematical techniques necessary for understanding of materials science and engineering topics such as energetics, materials structure and symmetry, materials response to applied fields, mechanics and physics of solids and soft materials. The class uses examples from 3.012 to introduce mathematical concepts and materials-related problem solving skills. Topics include linear algebra and orthonormal basis, eigenvalues and eigenvectors, quadratic forms, tensor operations, symmetry operations, calculus of several variables, introduction to complex analysis, ordinary and partial differential equations, theory of distributions, fourier analysis and random walks.Technical RequirementsMathematica® software is required to run the .nb files found on this course site.

Subjects

energetics | energetics | materials structure and symmetry: applied fields | materials structure and symmetry: applied fields | mechanics and physics of solids and soft materials | mechanics and physics of solids and soft materials | linear algebra | linear algebra | orthonormal basis | orthonormal basis | eigenvalues | eigenvalues | eigenvectors | eigenvectors | quadratic forms | quadratic forms | tensor operations | tensor operations | symmetry operations | symmetry operations | calculus | calculus | complex analysis | complex analysis | differential equations | differential equations | theory of distributions | theory of distributions | fourier analysis | fourier analysis | random walks | random walks | mathematical technicques | mathematical technicques | materials science | materials science | materials engineering | materials engineering | materials structure | materials structure | symmetry | symmetry | applied fields | applied fields | materials response | materials response | solids mechanics | solids mechanics | solids physics | solids physics | soft materials | soft materials | multi-variable calculus | multi-variable calculus | ordinary differential equations | ordinary differential equations | partial differential equations | partial differential equations | applied mathematics | applied mathematics | mathematical techniques | mathematical techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.34 Numerical Methods Applied to Chemical Engineering (MIT) 10.34 Numerical Methods Applied to Chemical Engineering (MIT)

Description

This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems are presented. Probability theory and its use in physical modeling is covered, as is the statistical analysis of data and parameter estimation. The finite difference and finite element techniques are presented for converting the partial differential equations obtained from transport phenomena to DAE systems. The use of these techniques will be demonstrated throughout the course in the Matlab® computing environment. This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems are presented. Probability theory and its use in physical modeling is covered, as is the statistical analysis of data and parameter estimation. The finite difference and finite element techniques are presented for converting the partial differential equations obtained from transport phenomena to DAE systems. The use of these techniques will be demonstrated throughout the course in the Matlab® computing environment.

Subjects

Numerical Methods Applied to Chemical Engineering | Numerical Methods Applied to Chemical Engineering | Navier-Stokes | Navier-Stokes | partial differential equations | partial differential equations | nonlinear algebraic equations | nonlinear algebraic equations | numerical linear algebra | numerical linear algebra

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.311 Principles of Applied Mathematics (MIT) 18.311 Principles of Applied Mathematics (MIT)

Description

Discussion of computational and modeling issues. Nonlinear dynamical systems; nonlinear waves; diffusion; stability; characteristics; nonlinear steepening, breaking and shock formation; conservation laws; first-order partial differential equations; finite differences; numerical stability; etc. Applications to traffic problems, flows in rivers, internal waves, mechanical vibrations and other problems in the physical world.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. MATLAB® is a trademark of The MathWorks, Inc. Discussion of computational and modeling issues. Nonlinear dynamical systems; nonlinear waves; diffusion; stability; characteristics; nonlinear steepening, breaking and shock formation; conservation laws; first-order partial differential equations; finite differences; numerical stability; etc. Applications to traffic problems, flows in rivers, internal waves, mechanical vibrations and other problems in the physical world.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. MATLAB® is a trademark of The MathWorks, Inc.

Subjects

Nonlinear dynamical systems | Nonlinear dynamical systems | nonlinear waves | nonlinear waves | diffusion | diffusion | stability | stability | characteristics | characteristics | nonlinear steepening | nonlinear steepening | breaking and shock formation | breaking and shock formation | conservation laws | conservation laws | first-order partial differential equations | first-order partial differential equations | finite differences | finite differences | numerical stability | numerical stability | traffic problems | traffic problems | flows in rivers | flows in rivers | internal waves | internal waves | mechanical vibrations | mechanical vibrations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.29 Numerical Marine Hydrodynamics (13.024) (MIT) 2.29 Numerical Marine Hydrodynamics (13.024) (MIT)

Description

Includes audio/video content: AV faculty introductions. This course is an introduction to numerical methods: interpolation, differentiation, integration, and systems of linear equations. It covers the solution of differential equations by numerical integration, as well as partial differential equations of inviscid hydrodynamics: finite difference methods, boundary integral equation panel methods. Also addressed are introductory numerical lifting surface computations, fast Fourier transforms, the numerical representation of deterministic and random sea waves, as well as integral boundary layer equations and numerical solutions. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.024. In 2005, ocean engineering subjects became part of Course 2 (Department Includes audio/video content: AV faculty introductions. This course is an introduction to numerical methods: interpolation, differentiation, integration, and systems of linear equations. It covers the solution of differential equations by numerical integration, as well as partial differential equations of inviscid hydrodynamics: finite difference methods, boundary integral equation panel methods. Also addressed are introductory numerical lifting surface computations, fast Fourier transforms, the numerical representation of deterministic and random sea waves, as well as integral boundary layer equations and numerical solutions. This course was originally offered in Course 13 (Department of Ocean Engineering) as 13.024. In 2005, ocean engineering subjects became part of Course 2 (Department

Subjects

numerical methods | numerical methods | interpolation | interpolation | differentiation | differentiation | integration | integration | systems of linear equations | systems of linear equations | differential equations | differential equations | numerical integration | numerical integration | partial differential | partial differential | boundary integral equation panel methods | boundary integral equation panel methods | deterministic and random sea waves | deterministic and random sea waves | Fast Fourier Transforms | Fast Fourier Transforms | finite difference methods | finite difference methods | Integral boundary layer equations | Integral boundary layer equations | numerical lifting surface computations | numerical lifting surface computations | Numerical representation | Numerical representation | numerical solutions | numerical solutions | partial differential equations of inviscid hydrodynamics | partial differential equations of inviscid hydrodynamics | incompressible fluid mechanics | incompressible fluid mechanics | calculus | calculus | complex numbers | complex numbers | root finding | root finding | curve fitting | curve fitting | numerical differentiation | numerical differentiation | numerical errors | numerical errors | panel methods | panel methods | oscillating rigid objects | oscillating rigid objects

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.34 Numerical Methods Applied to Chemical Engineering (MIT) 10.34 Numerical Methods Applied to Chemical Engineering (MIT)

Description

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site. Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.

Subjects

Matlab | Matlab | modern computational techniques in chemical engineering | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | linear systems | scientific computing | scientific computing | solving sets of nonlinear algebraic equations | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | solving differential-algebraic (DAE) systems | probability theory | probability theory | use of probability theory in physical modeling | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of data estimation | statistical analysis of parameter estimation | statistical analysis of parameter estimation | finite difference techniques | finite difference techniques | finite element techniques | finite element techniques | converting partial differential equations | converting partial differential equations | Navier-Stokes equations | Navier-Stokes equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.34 Numerical Methods Applied to Chemical Engineering (MIT) 10.34 Numerical Methods Applied to Chemical Engineering (MIT)

Description

This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems are presented. Probability theory and its use in physical modeling is covered, as is the statistical analysis of data and parameter estimation. The finite difference and finite element techniques are presented for converting the partial differential equations obtained from transport phenomena to DAE systems. The use of these techniques will be demonstrated throughout the course in the MATLAB® computing environment. This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems are presented. Probability theory and its use in physical modeling is covered, as is the statistical analysis of data and parameter estimation. The finite difference and finite element techniques are presented for converting the partial differential equations obtained from transport phenomena to DAE systems. The use of these techniques will be demonstrated throughout the course in the MATLAB® computing environment.

Subjects

Matlab | Matlab | modern computational techniques in chemical engineering | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | linear systems | scientific computing | scientific computing | solving sets of nonlinear algebraic equations | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | solving differential-algebraic (DAE) systems | probability theory | probability theory | use of probability theory in physical modeling | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of data estimation | statistical analysis of parameter estimation | statistical analysis of parameter estimation | finite difference techniques | finite difference techniques | finite element techniques | finite element techniques | converting partial differential equations | converting partial differential equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.901 Computational Methods in Aerospace Engineering (MIT) 16.901 Computational Methods in Aerospace Engineering (MIT)

Description

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints. This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.

Subjects

numerical integration | numerical integration | ODEs | ODEs | ordinary differential equations | ordinary differential equations | finite difference | finite difference | finite volume | finite volume | finite element | finite element | discretization | discretization | PDEs | PDEs | partial differential equations | partial differential equations | numerical linear algebra | numerical linear algebra | probabilistic methods | probabilistic methods | optimization | optimization | omputational methods | omputational methods | aerospace engineering | aerospace engineering | computational methods | computational methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.920J Numerical Methods for Partial Differential Equations (SMA 5212) (MIT) 16.920J Numerical Methods for Partial Differential Equations (SMA 5212) (MIT)

Description

A presentation of the fundamentals of modern numerical techniques for a wide range of linear and nonlinear elliptic, parabolic and hyperbolic partial differential equations and integral equations central to a wide variety of applications in science, engineering, and other fields. Topics include: Mathematical Formulations; Finite Difference and Finite Volume Discretizations; Finite Element Discretizations; Boundary Element Discretizations; Direct and Iterative Solution Methods.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5212 (Numerical Methods for Partial Differential Equations). A presentation of the fundamentals of modern numerical techniques for a wide range of linear and nonlinear elliptic, parabolic and hyperbolic partial differential equations and integral equations central to a wide variety of applications in science, engineering, and other fields. Topics include: Mathematical Formulations; Finite Difference and Finite Volume Discretizations; Finite Element Discretizations; Boundary Element Discretizations; Direct and Iterative Solution Methods.This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5212 (Numerical Methods for Partial Differential Equations).

Subjects

numerical methods | numerical methods | differential equations | differential equations | linear | linear | nonlinear | nonlinear | elliptic | elliptic | parabolic | parabolic | hyperbolic | hyperbolic | partial differential equations | partial differential equations | integral equations | integral equations | mathematical formulations | mathematical formulations | mathematics | mathematics | finite difference | finite difference | finite volume | finite volume | discretisation | discretisation | finite element | finite element | boundary element | boundary element | iteration | iteration | 16.920 | 16.920 | 2.097 | 2.097 | 6.339 | 6.339

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.306 Advanced Partial Differential Equations with Applications (MIT) 18.306 Advanced Partial Differential Equations with Applications (MIT)

Description

The focus of the course is the concepts and techniques for solving the partial differential equations (PDE) that permeate various scientific disciplines. The emphasis is on nonlinear PDE. Applications include problems from fluid dynamics, electrical and mechanical engineering, materials science, quantum mechanics, etc. The focus of the course is the concepts and techniques for solving the partial differential equations (PDE) that permeate various scientific disciplines. The emphasis is on nonlinear PDE. Applications include problems from fluid dynamics, electrical and mechanical engineering, materials science, quantum mechanics, etc.

Subjects

partial differential equations (pde) | partial differential equations (pde) | nonlinear pde. Diffusion | nonlinear pde. Diffusion | dispersion | dispersion | Initial and boundary value problems | Initial and boundary value problems | Characteristics and shocks | Characteristics and shocks | Separation of variables | Separation of variables | transform methods | transform methods | Green's functions | Green's functions | Asymptotics | Asymptotics | geometrical theory | geometrical theory | Dimensional analysis | Dimensional analysis | self-similarity | self-similarity | traveling waves | traveling waves | Singular perturbation and boundary layers | Singular perturbation and boundary layers | Solitons | Solitons | Variational methods | Variational methods | Free-boundary problems | Free-boundary problems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.307 Integral Equations (MIT) 18.307 Integral Equations (MIT)

Description

This course emphasizes concepts and techniques for solving integral equations from an applied mathematics perspective. Material is selected from the following topics: Volterra and Fredholm equations, Fredholm theory, the Hilbert-Schmidt theorem; Wiener-Hopf Method; Wiener-Hopf Method and partial differential equations; the Hilbert Problem and singular integral equations of Cauchy type; inverse scattering transform; and group theory. Examples are taken from fluid and solid mechanics, acoustics, quantum mechanics, and other applications. This course emphasizes concepts and techniques for solving integral equations from an applied mathematics perspective. Material is selected from the following topics: Volterra and Fredholm equations, Fredholm theory, the Hilbert-Schmidt theorem; Wiener-Hopf Method; Wiener-Hopf Method and partial differential equations; the Hilbert Problem and singular integral equations of Cauchy type; inverse scattering transform; and group theory. Examples are taken from fluid and solid mechanics, acoustics, quantum mechanics, and other applications.

Subjects

integral equations | integral equations | applied mathematics | applied mathematics | Volterra equation | Volterra equation | Fredholm equation | Fredholm equation | Fredholm theory | Fredholm theory | Hilbert-Schmidt theorem | Hilbert-Schmidt theorem | Wiener-Hopf Method | Wiener-Hopf Method | partial differential equations | partial differential equations | Hilbert Problem | Hilbert Problem | ingular integral equations | ingular integral equations | Cauchy type | Cauchy type | inverse scattering transform | inverse scattering transform | group theory | group theory | fluid mechanics | fluid mechanics | solid mechanics | solid mechanics | acoustics | acoustics | quantum mechanics | quantum mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.075 Advanced Calculus for Engineers (MIT) 18.075 Advanced Calculus for Engineers (MIT)

Description

This course analyzes the functions of a complex variable and the calculus of residues. It also covers subjects such as ordinary differential equations, partial differential equations, Bessel and Legendre functions, and the Sturm-Liouville theory. This course analyzes the functions of a complex variable and the calculus of residues. It also covers subjects such as ordinary differential equations, partial differential equations, Bessel and Legendre functions, and the Sturm-Liouville theory.

Subjects

Functions of complex variable | Functions of complex variable | calculus of residues | calculus of residues | Ordinary differential equations | Ordinary differential equations | Bessel and Legendre functions | Bessel and Legendre functions | Sturm-Liouville theory | Sturm-Liouville theory | partial differential equations | partial differential equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.305 Advanced Analytic Methods in Science and Engineering (MIT) 18.305 Advanced Analytic Methods in Science and Engineering (MIT)

Description

Advanced Analytic Methods in Science and Engineering is a comprehensive treatment of the advanced methods of applied mathematics. It was designed to strengthen the mathematical abilities of graduate students and train them to think on their own. Advanced Analytic Methods in Science and Engineering is a comprehensive treatment of the advanced methods of applied mathematics. It was designed to strengthen the mathematical abilities of graduate students and train them to think on their own.

Subjects

elementary methods complex analysis | elementary methods complex analysis | ordinary differential equations | ordinary differential equations | partial differential equations | partial differential equations | expansions around regular irregular singular points | expansions around regular irregular singular points | asymptotic evaluation integrals | asymptotic evaluation integrals | regular perturbations | regular perturbations | WKB method | WKB method | multiple scale method | multiple scale method | boundary-layer techniques. | boundary-layer techniques. | asymptotic evaluation integrals | regular perturbations | asymptotic evaluation integrals | regular perturbations | boundary-layer techniques | boundary-layer techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.901 Computational Methods in Aerospace Engineering (MIT) 16.901 Computational Methods in Aerospace Engineering (MIT)

Description

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints. This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.

Subjects

numerical integration | numerical integration | ODEs | ODEs | ordinary differential equations | ordinary differential equations | finite difference | finite difference | finite volume | finite volume | finite element | finite element | discretization | discretization | PDEs | PDEs | partial differential equations | partial differential equations | numerical linear algebra | numerical linear algebra | probabilistic methods | probabilistic methods | optimization | optimization | omputational methods | omputational methods | aerospace engineering | aerospace engineering | computational methods | computational methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.354J Nonlinear Dynamics II: Continuum Systems (MIT) 18.354J Nonlinear Dynamics II: Continuum Systems (MIT)

Description

This course introduces the basic ideas for understanding the dynamics of continuum systems, by studying specific examples from a range of different fields. Our goal will be to explain the general principles, and also to illustrate them via important physical effects. A parallel goal of this course is to give you an introduction to mathematical modeling. This course introduces the basic ideas for understanding the dynamics of continuum systems, by studying specific examples from a range of different fields. Our goal will be to explain the general principles, and also to illustrate them via important physical effects. A parallel goal of this course is to give you an introduction to mathematical modeling.

Subjects

continuum systems | continuum systems | mathematical modeling | mathematical modeling | diffusion equation | diffusion equation | equations of motion | equations of motion | nonlinear partial differential equations | nonlinear partial differential equations | calculus of variations | calculus of variations | Brachistochrone curve | Brachistochrone curve | soap films | soap films | hydrodynamics | hydrodynamics | Navier-Stokes | Navier-Stokes | solitons | solitons | surface tension | surface tension | waves | waves | conformal maps | conformal maps | airfoils | airfoils

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.901 Computational Methods in Aerospace Engineering (MIT) 16.901 Computational Methods in Aerospace Engineering (MIT)

Description

This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints. This course serves as an introduction to computational techniques arising in aerospace engineering. Applications are drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration of systems of ordinary differential equations; finite-difference, finite-volume, and finite-element discretization of partial differential equations; numerical linear algebra; eigenvalue problems; and optimization with constraints.

Subjects

numerical integration | numerical integration | ODEs | ODEs | ordinary differential equations | ordinary differential equations | finite difference | finite difference | finite volume | finite volume | finite element | finite element | discretization | discretization | PDEs | PDEs | partial differential equations | partial differential equations | numerical linear algebra | numerical linear algebra | probabilistic methods | probabilistic methods | optimization | optimization | omputational methods | omputational methods | aerospace engineering | aerospace engineering | computational methods | computational methods

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.34 Numerical Methods Applied to Chemical Engineering (MIT)

Description

This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems are presented. Probability theory and its use in physical modeling is covered, as is the statistical analysis of data and parameter estimation. The finite difference and finite element techniques are presented for converting the partial differential equations obtained from transport phenomena to DAE systems. The use of these techniques will be demonstrated throughout the course in the MATLAB® computing environment.

Subjects

Matlab | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | scientific computing | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | probability theory | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of parameter estimation | finite difference techniques | finite element techniques | converting partial differential equations

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Partial Differential Equations

Description

11 Separation of variables in three dimensions

Subjects

ukoer | sfsoer | level 2 | partial differential equations | physics | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Multivariable Calculus

Description

Multivariable Calculus is an expansion of Single-Variable Calculus in that it extends single variable calculus to higher dimensions. This course begins with a fresh look at limits and continuity, moves to derivatives and the process of generalizing them to higher dimensions, and finally examines multiple integrals (integration over regions of space as opposed to intervals). This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Mathematics 103)

Subjects

differentiation | derivatives | multiple integrals | vectors | stokes' theorem | divergence theorem | partial differential equations | Computer science | I100

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Introduction to Partial Differential Equations

Description

Partial differential equations (PDEs) describe the relationships among the derivatives of an unknown function with respect to different independent variables, such as time and position. Experiment and observation provide information about the connections between rates of change of an important quantity, such as heat, with respect to different variables. This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Mathematics 222)

Subjects

partial differential equations | sets | functions | derivatives | heat | diffusion | linear | fourier series | bounded domains | functional analysis | solution methods | impulse-response | fourier transform | unbounded domain | Computer science | I100

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata