Searching for particle trajectories : 2 results found | RSS Feed for this search

8.033 Relativity (MIT) 8.033 Relativity (MIT)

Description

Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay. Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay.

Subjects

Einstein's postulates | Einstein's postulates | consequences for simultaneity | time dilation | length contraction | clock synchronization | consequences for simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects and paradoxes | relativistic effects and paradoxes | Minkowski diagrams | Minkowski diagrams | invariants and four-vectors | invariants and four-vectors | momentum | energy and mass | momentum | energy and mass | particle collisions | particle collisions | Relativity and electricity | Relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | General Relativity | General Relativity | principle of equivalence | principle of equivalence | the Schwarzchild metric | the Schwarzchild metric | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | gravitational red shift | particle trajectories | particle trajectories | light trajectories | light trajectories | invariants | invariants | four-vectors | four-vectors | momentum | momentum | energy | energy | mass | mass | relativistic effects | relativistic effects | paradoxes | paradoxes | electricity | electricity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Schwarzchild metric | Schwarzchild metric | geodesics | geodesics | Shaprio delay | Shaprio delay | relativistic kinematics | relativistic kinematics | relativistic dynamics | relativistic dynamics | electromagnetism | electromagnetism | hubble expansion | hubble expansion | universe | universe | equivalence principle | equivalence principle | curved space time | curved space time | Ether Theory | Ether Theory | constants | constants | speed of light | speed of light | c | c | graph | graph | pythagorem theorem | pythagorem theorem | triangle | triangle | arrows | arrows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT)

Description

Relativity is normally taken by physics majors in their sophomore year. Topics include: Einstein's postulates; consequences for simultaneity, time dilation, length contraction, clock synchronization; Lorentz transformation; relativistic effects and paradoxes; Minkowski diagrams; invariants and four-vectors; momentum, energy and mass; and particle collisions. Also covered is: Relativity and electricity; Coulomb's law; and magnetic fields. Brief introduction to Newtonian cosmology. There is also an introduction to some concepts of General Relativity; principle of equivalence; the Schwarzchild metric; gravitational red shift, particle and light trajectories, geodesics, and Shapiro delay.

Subjects

Einstein's postulates | consequences for simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | relativistic effects and paradoxes | Minkowski diagrams | invariants and four-vectors | momentum | energy and mass | particle collisions | Relativity and electricity | Coulomb's law | magnetic fields | Newtonian cosmology | General Relativity | principle of equivalence | the Schwarzchild metric | gravitational red shift | particle and light trajectories | geodesics | Shapiro delay | gravitational red shift | particle trajectories | light trajectories | invariants | four-vectors | momentum | energy | mass | relativistic effects | paradoxes | electricity | time dilation | length contraction | clock synchronization | Schwarzchild metric | geodesics | Shaprio delay | relativistic kinematics | relativistic dynamics | electromagnetism | hubble expansion | universe | equivalence principle | curved space time | Ether Theory | constants | speed of light | c | graph | pythagorem theorem | triangle | arrows

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata