Searching for photovoltaic : 37 results found | RSS Feed for this search

1

2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies (MIT) 2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies (MIT)

Description

Includes audio/video content: AV lectures. This course introduces principles and technologies for converting heat into electricity via solid-state devices. The first part of the course discusses thermoelectric energy conversion and thermoelectric materials, thermionic energy conversion, and photovoltaics. The second part of the course discusses solar thermal technologies. Various solar heat collection systems will be reviewed, followed by an introduction to the principles of solar thermophotovoltaics and solar thermoelectrics. Spectral control techniques, which are critical for solar thermal systems, will be discussed. Includes audio/video content: AV lectures. This course introduces principles and technologies for converting heat into electricity via solid-state devices. The first part of the course discusses thermoelectric energy conversion and thermoelectric materials, thermionic energy conversion, and photovoltaics. The second part of the course discusses solar thermal technologies. Various solar heat collection systems will be reviewed, followed by an introduction to the principles of solar thermophotovoltaics and solar thermoelectrics. Spectral control techniques, which are critical for solar thermal systems, will be discussed.

Subjects

thermophotovoltaics | thermophotovoltaics | thermoelectric devices | thermoelectric devices | selective surfaces | selective surfaces | nanostructured materials | nanostructured materials | photovoltaic cells | photovoltaic cells | semiconductor physics | semiconductor physics | phonons | phonons | absorption spectrum | absorption spectrum | Seebeck effect | Seebeck effect | thermionic engines | thermionic engines | photonic crystals | photonic crystals | band gap | band gap

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT) 8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like:How much energy can we really get from wind?How does a solar photovoltaic work?What is an OTEC (Ocean Thermal Energy Converter) and how does it work?What is the physics behind global warming?What makes engines efficient?How does a nuclear reactor work, and what are the realistic hazards?The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.Special note about this course: The Physics of Energy is a new subject at MIT, offered for the first time in the Fall of 2008. The materials for the course, as such, are not yet ready fo This course is designed to give you the scientific understanding you need to answer questions like:How much energy can we really get from wind?How does a solar photovoltaic work?What is an OTEC (Ocean Thermal Energy Converter) and how does it work?What is the physics behind global warming?What makes engines efficient?How does a nuclear reactor work, and what are the realistic hazards?The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.Special note about this course: The Physics of Energy is a new subject at MIT, offered for the first time in the Fall of 2008. The materials for the course, as such, are not yet ready fo

Subjects

energy | energy | solar energy | solar energy | wind energy | wind energy | nuclear energy | nuclear energy | biological energy sources | biological energy sources | thermal energy | thermal energy | eothermal power | eothermal power | ocean thermal energy conversion | ocean thermal energy conversion | hydro power | hydro power | climate change | climate change | energy storage | energy storage | energy conservation | energy conservation | nuclear radiation | nuclear radiation | solar photovoltaic | solar photovoltaic | OTEC | OTEC | nuclear reactor | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT) Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance. This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. It features a device-motivated approach which places strong emphasis on emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | electrical | optical | and magnetic devices | microstructural characteristics of materials | microstructural characteristics of materials | device-motivated approach | device-motivated approach | emerging technologies | emerging technologies | physical phenomena | physical phenomena | electrical conductivity | electrical conductivity | doping | doping | transistors | transistors | photodectors | photodectors | photovoltaics | photovoltaics | luminescence | luminescence | light emitting diodes | light emitting diodes | lasers | lasers | optical phenomena | optical phenomena | photonics | photonics | ferromagnetism | ferromagnetism | magnetoresistance | magnetoresistance | electrical devices | electrical devices | optical devices | optical devices | magnetic devices | magnetic devices | materials | materials | device applications | device applications

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.60 Fundamentals of Advanced Energy Conversion (MIT) 2.60 Fundamentals of Advanced Energy Conversion (MIT)

Description

This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization

Subjects

Thermodynamics | Thermodynamics | chemistry | chemistry | flow | flow | transport processes | transport processes | energy systems | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | and photoelectric processes | power and transportation systems | power and transportation systems | efficiency | efficiency | environmental impact | environmental impact | performance | performance | fossil fuels | fossil fuels | hydrogen resources | hydrogen resources | nuclear resources | nuclear resources | renewable resources | renewable resources | fuel reforming | fuel reforming | hydrogen and synthetic fuel production | hydrogen and synthetic fuel production | fuel cells and batteries | fuel cells and batteries | combustion | combustion | hybrids | hybrids | catalysis | catalysis | supercritical and combined cycles | supercritical and combined cycles | photovoltaics | photovoltaics | energy storage and transmission | energy storage and transmission | Optimal source utilization | Optimal source utilization | fuel-life cycle analysis. | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | thermochemical | electrochemical | and photoelectric processes | 2.62 | 2.62 | 10.392 | 10.392 | 22.40 | 22.40

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.003 Principles of Engineering Practice (MIT) 3.003 Principles of Engineering Practice (MIT)

Description

This class introduces students to the interdisciplinary nature of 21st-century engineering projects with three threads of learning: a technical toolkit, a social science toolkit, and a methodology for problem-based learning. Students encounter the social, political, economic, and technological challenges of engineering practice by participating in real engineering projects with faculty and industry; this semester's major project focuses on the engineering and economics of solar cells. Student teams will create prototypes and mixed media reports with exercises in project planning, analysis, design, optimization, demonstration, reporting and team building. This class introduces students to the interdisciplinary nature of 21st-century engineering projects with three threads of learning: a technical toolkit, a social science toolkit, and a methodology for problem-based learning. Students encounter the social, political, economic, and technological challenges of engineering practice by participating in real engineering projects with faculty and industry; this semester's major project focuses on the engineering and economics of solar cells. Student teams will create prototypes and mixed media reports with exercises in project planning, analysis, design, optimization, demonstration, reporting and team building.

Subjects

ethical engineering | ethical engineering | communication | communication | technical writing | technical writing | inventions | inventions | patents | patents | transportation | transportation | infrastructure | infrastructure | sustainable materials | sustainable materials | photovoltaic cell | photovoltaic cell | electromagnetic waves | electromagnetic waves

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT) Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance. This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | electrical | optical | and magnetic devices | microstructural characteristics of materials | microstructural characteristics of materials | device-motivated approach | device-motivated approach | emerging technologies | emerging technologies | physical phenomena | physical phenomena | electrical conductivity | electrical conductivity | doping | doping | transistors | transistors | photodectors | photodectors | photovoltaics | photovoltaics | luminescence | luminescence | light emitting diodes | light emitting diodes | lasers | lasers | optical phenomena | optical phenomena | photonics | photonics | ferromagnetism | ferromagnetism | magnetoresistance | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.92 Energy, Environment, and Society (MIT) 5.92 Energy, Environment, and Society (MIT)

Description

"Energy, Environment and Society" is an opportunity for first-year students to make direct contributions to energy innovations at MIT and in local communities. The class takes a project-based approach, bringing student teams together to conduct studies that will help MIT, Cambridge and Boston to make tangible improvements in their energy management systems. Students will develop a thorough understanding of energy systems and their major components through guest lectures by researchers from across MIT and will apply that knowledge in their projects. Students are involved in all aspects of project design, from the refinement of research questions to data collection and analysis, conclusion drawing and presentation of findings. Each student team will work closely with experts including loca "Energy, Environment and Society" is an opportunity for first-year students to make direct contributions to energy innovations at MIT and in local communities. The class takes a project-based approach, bringing student teams together to conduct studies that will help MIT, Cambridge and Boston to make tangible improvements in their energy management systems. Students will develop a thorough understanding of energy systems and their major components through guest lectures by researchers from across MIT and will apply that knowledge in their projects. Students are involved in all aspects of project design, from the refinement of research questions to data collection and analysis, conclusion drawing and presentation of findings. Each student team will work closely with experts including loca

Subjects

energy | energy | environment | environment | society | society | energy initiative | energy initiative | project-based | project-based | energy management | energy management | project design | project design | renewable energy | renewable energy | energy efficiency | energy efficiency | transportation | transportation | wind power | wind power | wind mill | wind mill | energy recovery | energy recovery | nuclear reactor | nuclear reactor | infrastructure | infrastructure | climate | climate | thermodynamics | thermodynamics | sustainable energy | sustainable energy | energy calculator | energy calculator | solar power | solar power | solarthermal | solarthermal | solar photovoltaic | solar photovoltaic | greenhouse gas | greenhouse gas | emissions | emissions | turbines | turbines

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT) 8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy. This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.

Subjects

energy | energy | solar energy | solar energy | wind energy | wind energy | nuclear energy | nuclear energy | biological energy sources | biological energy sources | thermal energy | thermal energy | eothermal power | eothermal power | ocean thermal energy conversion | ocean thermal energy conversion | hydro power | hydro power | climate change | climate change | energy storage | energy storage | energy conservation | energy conservation | nuclear radiation | nuclear radiation | solar photovoltaic | solar photovoltaic | OTEC | OTEC | nuclear reactor | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.081J Introduction to Sustainable Energy (MIT) 22.081J Introduction to Sustainable Energy (MIT)

Description

This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments. This class assesses current and potential future energy systems, covering resources, extraction, conversion, and end-use technologies, with emphasis on meeting regional and global energy needs in the 21st century in a sustainable manner. Instructors and guest lecturers will examine various renewable and conventional energy production technologies, energy end-use practices and alternatives, and consumption practices in different countries. Students will learn a quantitative framework to aid in evaluation and analysis of energy technology system proposals in the context of engineering, political, social, economic, and environmental goals. Students taking the graduate version, Sustainable Energy, complete additional assignments.

Subjects

22.081 | 22.081 | 2.650 | 2.650 | 10.291 | 10.291 | 1.818 | 1.818 | 10.391 | 10.391 | 11.371 | 11.371 | 22.811 | 22.811 | ESD.166 | ESD.166 | energy transfer | energy transfer | clean technologies | clean technologies | energy resource assessment | energy resource assessment | energy conversion | energy conversion | wind power | wind power | nuclear proliferation | nuclear proliferation | nuclear waste disposal | nuclear waste disposal | carbon management options | carbon management options | geothermal energy | geothermal energy | solar photovoltaics | solar photovoltaics | solar thermal energy | solar thermal energy | biomass energy | biomass energy | biomass conversion | biomass conversion | eco-buildings | eco-buildings | hydropower | hydropower

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.S079 Nanomaker (MIT) 6.S079 Nanomaker (MIT)

Description

Includes audio/video content: AV special element video. This course links clean energy sources and storage technology to energy consumption case studies to give students a concept of the full circle of production and consumption. Specifically, photovoltaic, organic photovoltaic, piezoelectricity and thermoelectricity sources are applied to electrophoresis, lab on a chip, and paper microfluidic applications–relevant analytical techniques in biology and chemistry. Hands-on experimentation with everyday materials and equipment help connect the theory with the implementation. Complementary laboratories fabricating LEDs, organic LEDs and spectrometers introduce the diagnostic tools used to characterize energy efficiency.This course is one of many OCW Energy Courses, and it is an elective Includes audio/video content: AV special element video. This course links clean energy sources and storage technology to energy consumption case studies to give students a concept of the full circle of production and consumption. Specifically, photovoltaic, organic photovoltaic, piezoelectricity and thermoelectricity sources are applied to electrophoresis, lab on a chip, and paper microfluidic applications–relevant analytical techniques in biology and chemistry. Hands-on experimentation with everyday materials and equipment help connect the theory with the implementation. Complementary laboratories fabricating LEDs, organic LEDs and spectrometers introduce the diagnostic tools used to characterize energy efficiency.This course is one of many OCW Energy Courses, and it is an elective

Subjects

clean energy | clean energy | energy sources | energy sources | energy storage | energy storage | energy consumption | energy consumption | photovoltaic | photovoltaic | piezoelectric | piezoelectric | thermoelectric | thermoelectric | LED | LED | light emitting diode | light emitting diode | organic LED | organic LED | analytical biology | analytical biology | analytical chemistry | analytical chemistry | microfluidics | microfluidics | spectrometer | spectrometer | energy efficiency | energy efficiency

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.627 Fundamentals of Photovoltaics (MIT) 2.627 Fundamentals of Photovoltaics (MIT)

Description

Includes audio/video content: AV lectures, AV special element video. Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment. This course is one of many OCW Energy Courses, and it is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute–wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences a Includes audio/video content: AV lectures, AV special element video. Fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, risk analysis, and technology evolution in the context of markets, policies, society, and environment. This course is one of many OCW Energy Courses, and it is an elective subject in MIT's undergraduate Energy Studies Minor. This Institute–wide program complements the deep expertise obtained in any major with a broad understanding of the interlinked realms of science, technology, and social sciences a

Subjects

photovoltaics | photovoltaics | renewable energy | renewable energy | solar | solar | pn-junction | pn-junction | quantum efficiency | quantum efficiency | bandgap | bandgap | thermalization | thermalization | semiconductor | semiconductor | thin films | thin films | charge excitation | charge excitation | conduction | conduction | commercialization | commercialization | emerging technologies | emerging technologies | conversion efficiencies | conversion efficiencies | loss mechanisms | loss mechanisms | manufacturing | manufacturing | life-cycle analysis | life-cycle analysis | markets | markets | policy | policy | society | society | environment | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.S07 Photovoltaic Solar Energy Systems (MIT) EC.S07 Photovoltaic Solar Energy Systems (MIT)

Description

This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included. This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.

Subjects

solar radiation | solar radiation | solar flux | solar flux | photovoltaics | photovoltaics | solar gain | solar gain | solar energy | solar energy | solar energy collection systems | solar energy collection systems | design | design | cost-benefit analysis | cost-benefit analysis | green energy | green energy | hardware | hardware | stand-alone collectors | stand-alone collectors | flat-plate collectors | flat-plate collectors | PV stations | PV stations | utilities | utilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.627 Fundamentals of Photovoltaics (MIT) 2.627 Fundamentals of Photovoltaics (MIT)

Description

In this course, students learn about the fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, and risk analysis. Some of the course will also be devoted to discussing photovoltaic technology evolution in the context of markets, policies, society, and environment. In this course, students learn about the fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, and risk analysis. Some of the course will also be devoted to discussing photovoltaic technology evolution in the context of markets, policies, society, and environment.

Subjects

photovoltaics | photovoltaics | renewable energy | renewable energy | solar | solar | pn-junction | pn-junction | quantum efficiency | quantum efficiency | bandgap | bandgap | thermalization | thermalization | semiconductor | semiconductor | thin films | thin films | charge excitation | charge excitation | conduction | conduction | commercialization | commercialization | emerging technologies | emerging technologies | conversion efficiencies | conversion efficiencies | loss mechanisms | loss mechanisms | manufacturing | manufacturing | life-cycle analysis | life-cycle analysis | markets | markets | policy | policy | society | society | environment | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies (MIT)

Description

This course introduces principles and technologies for converting heat into electricity via solid-state devices. The first part of the course discusses thermoelectric energy conversion and thermoelectric materials, thermionic energy conversion, and photovoltaics. The second part of the course discusses solar thermal technologies. Various solar heat collection systems will be reviewed, followed by an introduction to the principles of solar thermophotovoltaics and solar thermoelectrics. Spectral control techniques, which are critical for solar thermal systems, will be discussed.

Subjects

thermophotovoltaics | thermoelectric devices | selective surfaces | nanostructured materials | photovoltaic cells | semiconductor physics | phonons | absorption spectrum | Seebeck effect | thermionic engines | photonic crystals | band gap

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.769 Photovoltaic Solar Energy Systems (MIT)

Description

This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.

Subjects

solar radiation | solar flux | photovoltaics | solar gain | solar energy | solar energy collection systems | design | cost-benefit analysis | green energy | hardware | stand-alone collectors | flat-plate collectors | PV stations | utilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Magnetic Materials and Devices (MIT)

Description

This course explores the relationships which exist between the performance of electrical, optical, and magnetic devices and the microstructural characteristics of the materials from which they are constructed. The class uses a device-motivated approach which emphasizes emerging technologies. Device applications of physical phenomena are considered, including electrical conductivity and doping, transistors, photodetectors and photovoltaics, luminescence, light emitting diodes, lasers, optical phenomena, photonics, ferromagnetism, and magnetoresistance.

Subjects

electrical | optical | and magnetic devices | microstructural characteristics of materials | device-motivated approach | emerging technologies | physical phenomena | electrical conductivity | doping | transistors | photodectors | photovoltaics | luminescence | light emitting diodes | lasers | optical phenomena | photonics | ferromagnetism | magnetoresistance

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.S07 Photovoltaic Solar Energy Systems (MIT)

Description

This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.

Subjects

solar radiation | solar flux | photovoltaics | solar gain | solar energy | solar energy collection systems | design | cost-benefit analysis | green energy | hardware | stand-alone collectors | flat-plate collectors | PV stations | utilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.60 Fundamentals of Advanced Energy Conversion (MIT)

Description

This course covers fundamentals of thermodynamics, chemistry, flow and transport processes as applied to energy systems. Topics include analysis of energy conversion in thermomechanical, thermochemical, electrochemical, and photoelectric processes in existing and future power and transportation systems, with emphasis on efficiency, environmental impact and performance. Systems utilizing fossil fuels, hydrogen, nuclear and renewable resources, over a range of sizes and scales are discussed. Applications include fuel reforming, hydrogen and synthetic fuel production, fuel cells and batteries, combustion, hybrids, catalysis, supercritical and combined cycles, photovoltaics, etc. The course also deals with different forms of energy storage and transmission, and optimal source utilization

Subjects

Thermodynamics | chemistry | flow | transport processes | energy systems | energy conversion in thermomechanical | thermochemical | electrochemical | and photoelectric processes | power and transportation systems | efficiency | environmental impact | performance | fossil fuels | hydrogen resources | nuclear resources | renewable resources | fuel reforming | hydrogen and synthetic fuel production | fuel cells and batteries | combustion | hybrids | catalysis | supercritical and combined cycles | photovoltaics | energy storage and transmission | Optimal source utilization | fuel-life cycle analysis. | thermochemical | electrochemical | and photoelectric processes | 2.62 | 10.392 | 22.40

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How Green are the 2012 Games?

Description

It is not just the Olympic Athletes that need Energy! The combined right hook and left jab of the economic crisis and underestimation of the true financial cost of the 2012 Games look set to threaten a knockout blow to the notably green ambitions of the 2012 Olympic Games.

Subjects

oxb:060111:034dd | sport | leisure | tourism | hospitality. cc-by | creative commons | UKOER | HLST | ENGSCOER | OER | LL2012 | London 2012 | Olympics | Olympic Games | Paralympics | Paralympic Games | Learning Legacies | JISC | HEA | Oxford Brookes University | HLSTOER | IOC | LOCOG | athletics | competition | energy consumption | ecology | green | ecological | photovoltaic array | solar panels | renewable energy | wind farms | wind turbines | sustainability | green energy | ODA | Olympic Park | Olympic Delivery Authority | biomass | sponsors | fossil fuels | The Olympics Impact and Legacy.

License

This work is licensed under a Creative Commons Attribution 2.0 UK: England and Wales License,except where otherwise noted within the resource. This work is licensed under a Creative Commons Attribution 2.0 UK: England and Wales License,except where otherwise noted within the resource.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How Green are the 2012 Games?

Description

It is not just the Olympic Athletes that need Energy! The combined right hook and left jab of the economic crisis and underestimation of the true financial cost of the 2012 Games look set to threaten a knockout blow to the notably green ambitions of the 2012 Olympic Games.

Subjects

oxb:060111:034dd | sport | leisure | tourism | hospitality. cc-by | creative commons | UKOER | HLST | ENGSCOER | OER | LL2012 | London 2012 | Olympics | Olympic Games | Paralympics | Paralympic Games | Learning Legacies | JISC | HEA | Oxford Brookes University | HLSTOER | IOC | LOCOG | athletics | competition | energy consumption | ecology | green | ecological | photovoltaic array | solar panels | renewable energy | wind farms | wind turbines | sustainability | green energy | ODA | Olympic Park | Olympic Delivery Authority | biomass | sponsors | fossil fuels | The Olympics Impact and Legacy.

License

This work is licensed under a Creative Commons Attribution 2.0 UK: England and Wales License,except where otherwise noted within the resource. This work is licensed under a Creative Commons Attribution 2.0 UK: England and Wales License,except where otherwise noted within the resource.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Energy resources: solar energy

Description

Level: Intermediate

Subjects

biomass conversion | photovoltaic conversion | solar energy | solar heating | ukoer | geesoer | geography | environmental science | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.627 Fundamentals of Photovoltaics (MIT)

Description

In this course, students learn about the fundamentals of photoelectric conversion: charge excitation, conduction, separation, and collection. Lectures cover commercial and emerging photovoltaic technologies and cross-cutting themes, including conversion efficiencies, loss mechanisms, characterization, manufacturing, systems, reliability, life-cycle analysis, and risk analysis. Some of the course will also be devoted to discussing photovoltaic technology evolution in the context of markets, policies, society, and environment.

Subjects

photovoltaics | renewable energy | solar | pn-junction | quantum efficiency | bandgap | thermalization | semiconductor | thin films | charge excitation | conduction | commercialization | emerging technologies | conversion efficiencies | loss mechanisms | manufacturing | life-cycle analysis | markets | policy | society | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How green are the Games?

Description

It is not just the Olympic Athletes that need Energy! The combined right hook and left jab of the economic crisis and underestimation of the true financial cost of the 2012 Games look set to threaten a knockout blow to the notably green ambitions of the 2012 Olympic Games

Subjects

oxb:060111:034dd | sport | leisure | tourism | hospitality. cc-by | creative commons | athletics | competition | energy consumption | ecology | green | ecological | photovoltaic array | solar panels | renewable energy | wind farms | wind turbines | sustainability | green energy | biomass | sponsors | fossil fuels | ukoer | hlst | engscoer | oer | ll2012 | london 2012 | olympics | olympic games | paralympics | paralympic games | learning legacies | jisc | hea | oxford brookes university | hlstoer | ioc | locog | oda | olympic park | olympic delivery authority | the olympics impact and legacy | Social studies | L000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How Green are the 2012 Games?

Description

It is not just the Olympic Athletes that need Energy! The combined right hook and left jab of the economic crisis and underestimation of the true financial cost of the 2012 Games look set to threaten a knockout blow to the notably green ambitions of the 2012 Olympic Games.

Subjects

oxb:060111:034dd | sport | leisure | tourism | hospitality. cc-by | creative commons | UKOER | HLST | ENGSCOER | OER | LL2012 | London 2012 | Olympics | Olympic Games | Paralympics | Paralympic Games | Learning Legacies | JISC | HEA | Oxford Brookes University | HLSTOER | IOC | LOCOG | athletics | competition | energy consumption | ecology | green | ecological | photovoltaic array | solar panels | renewable energy | wind farms | wind turbines | sustainability | green energy | ODA | Olympic Park | Olympic Delivery Authority | biomass | sponsors | fossil fuels | The Olympics Impact and Legacy.

License

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 2.0 UK: England & Wales License, except where otherwise noted within the resource. This work is licensed under a Creative Commons Attribution 2.0 UK: England & Wales License, except where otherwise noted within the resource.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How Green are the 2012 Games?

Description

It is not just the Olympic Athletes that need Energy! The combined right hook and left jab of the economic crisis and underestimation of the true financial cost of the 2012 Games look set to threaten a knockout blow to the notably green ambitions of the 2012 Olympic Games.

Subjects

oxb:060111:034dd | sport | leisure | tourism | hospitality. cc-by | creative commons | UKOER | HLST | ENGSCOER | OER | LL2012 | London 2012 | Olympics | Olympic Games | Paralympics | Paralympic Games | Learning Legacies | JISC | HEA | Oxford Brookes University | HLSTOER | IOC | LOCOG | athletics | competition | energy consumption | ecology | green | ecological | photovoltaic array | solar panels | renewable energy | wind farms | wind turbines | sustainability | green energy | ODA | Olympic Park | Olympic Delivery Authority | biomass | sponsors | fossil fuels | The Olympics Impact and Legacy.

License

Creative Commons Licence
This work is licensed under a Creative Commons Attribution 2.0 UK: England & Wales License, except where otherwise noted within the resource. This work is licensed under a Creative Commons Attribution 2.0 UK: England & Wales License, except where otherwise noted within the resource.

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata