Searching for plant : 768 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2.782J Design of Medical Devices and Implants (MIT) 2.782J Design of Medical Devices and Implants (MIT)

Description

This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants. This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.

Subjects

2.782 | 2.782 | 3.961 | 3.961 | 20.451 | 20.451 | HST.524 | HST.524 | clinical problems | clinical problems | implants | implants | medical devices | medical devices | cell-matrix control volumes | cell-matrix control volumes | stress analysis | stress analysis | anatomic fit | anatomic fit | biomaterials | biomaterials | surgical implantation procedures | surgical implantation procedures | Preclinical testing | Preclinical testing | risk/benefit ratio assessment | risk/benefit ratio assessment | clinical performance | clinical performance | clinical trials | clinical trials | orthopedic devices | orthopedic devices | soft tissue implants | soft tissue implants | artificial organs | artificial organs | dental implants | dental implants | stent | stent | prosthesis | prosthesis | scaffold | scaffold | bio-implant | bio-implant | scar | scar | genetics | genetics | skin | skin | nerve | nerve | bone | bone | tooth | tooth | joint | joint | FDA | FDA | FDA approval | FDA approval | cartilage | cartilage | ACL | ACL | health | health | regulation | regulation | healthcare | healthcare | medicine | medicine | bioengineering | bioengineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.782J Design of Medical Devices and Implants (MIT) 2.782J Design of Medical Devices and Implants (MIT)

Description

Solution of clinical problems by use of implants and other medical devices. Systematic use of cell-matrix control volumes. The role of stress analysis in the design process. Anatomic fit: shape and size of implants. Selection of biomaterials. Instrumentation for surgical implantation procedures. Preclinical testing for safety and efficacy: risk/benefit ratio assessment. Evaluation of clinical performance: design of clinical trials. Project materials drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants. Solution of clinical problems by use of implants and other medical devices. Systematic use of cell-matrix control volumes. The role of stress analysis in the design process. Anatomic fit: shape and size of implants. Selection of biomaterials. Instrumentation for surgical implantation procedures. Preclinical testing for safety and efficacy: risk/benefit ratio assessment. Evaluation of clinical performance: design of clinical trials. Project materials drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.

Subjects

clinical problems | clinical problems | implants | implants | medical devices | medical devices | cell-matrix control volumes | cell-matrix control volumes | stress analysis | stress analysis | Anatomic fit | Anatomic fit | biomaterials | biomaterials | surgical implantation procedures | surgical implantation procedures | Preclinical testing | Preclinical testing | risk/benefit ratio assessment | risk/benefit ratio assessment | clinical performance | clinical performance | clinical trials | clinical trials | orthopedic devices | orthopedic devices | soft tissue implants | soft tissue implants | artificial organs | artificial organs | dental implants | dental implants | BE.451J | BE.451J | 2.782 | 2.782 | 3.961 | 3.961 | BE.451 | BE.451 | HST.524 | HST.524 | 20.451 | 20.451

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Microelectronics Processing Technology (MIT) 6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology. This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | microelectronics | Microelectronics processing | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | integrated circuits | vacuum | vacuum | chemical vapor deposition | chemical vapor deposition | CVD | CVD | oxidation | oxidation | diffusion | diffusion | implantation | implantation | lithography | lithography | soft lithography | soft lithography | etching | etching | sputtering | sputtering | evaporation | evaporation | interconnect | interconnect | metallization | metallization | crystal growth | crystal growth | reliability | reliability | fabrication | fabrication | processing | processing | photolithography | photolithography | physical vapor deposition | physical vapor deposition | MOS | MOS | MOS capacitor | MOS capacitor | microcantilever | microcantilever | microfluidic | microfluidic | 6.152 | 6.152 | 3.155 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.782J Design of Medical Devices and Implants (MIT)

Description

This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials. Student project materials are drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.

Subjects

2.782 | 3.961 | 20.451 | HST.524 | clinical problems | implants | medical devices | cell-matrix control volumes | stress analysis | anatomic fit | biomaterials | surgical implantation procedures | Preclinical testing | risk/benefit ratio assessment | clinical performance | clinical trials | orthopedic devices | soft tissue implants | artificial organs | dental implants | stent | prosthesis | scaffold | bio-implant | scar | genetics | skin | nerve | bone | tooth | joint | FDA | FDA approval | cartilage | ACL | health | regulation | healthcare | medicine | bioengineering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.441 Biomaterials-Tissue Interactions (BE.441) (MIT) 20.441 Biomaterials-Tissue Interactions (BE.441) (MIT)

Description

This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to

Subjects

medical implants | medical implants | artificial organs | artificial organs | tissue engineering | tissue engineering | matrix | matrix | biomaterials | biomaterials | protein adsorption | protein adsorption | unit cell process | unit cell process | wound healing | wound healing | tissue remodeling | tissue remodeling | tissue regeneration | tissue regeneration | organ regeneration | organ regeneration | prosthesis | prosthesis | biodegradable | biodegradable | bioreplaceable implants | bioreplaceable implants | BE.441 | BE.441 | 2.79 | 2.79 | 3.96 | 3.96 | HST.522 | HST.522

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.441 Biomaterials-Tissue Interactions (MIT) BE.441 Biomaterials-Tissue Interactions (MIT)

Description

This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterials-tissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to

Subjects

medical implants | medical implants | artificial organs | artificial organs | tissue engineering | tissue engineering | matrix | matrix | biomaterials | biomaterials | protein adsorption | protein adsorption | unit cell process | unit cell process | wound healing | wound healing | tissue remodeling | tissue remodeling | tissue regeneration | tissue regeneration | organ regeneration | organ regeneration | prosthesis | prosthesis | biodegradable | biodegradable | bioreplaceable implants | bioreplaceable implants | 2.79J | 2.79J | 3.96J | 3.96J | HST.522J | HST.522J | 2.79 | 2.79 | 3.96 | 3.96 | HST.522 | HST.522

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.032 Mechanical Behavior of Materials (MIT) 3.032 Mechanical Behavior of Materials (MIT)

Description

Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate th Here we will learn about the mechanical behavior of structures and materials, from the continuum description of properties to the atomistic and molecular mechanisms that confer those properties to all materials. We will cover elastic and plastic deformation, creep, and fracture of materials including crystalline and amorphous metals, ceramics, and (bio)polymers, and will focus on the design and processing of materials from the atomic to the macroscale to achieve desired mechanical behavior. Integrated laboratories provide the opportunity to explore these concepts through hands-on experiments including instrumentation of pressure vessels, visualization of atomistic deformation in bubble rafts, nanoindentation, and uniaxial mechanical testing, as well as writing assignments to communicate th

Subjects

Basic concepts of solid mechanics and mechanical behavior of materials | Basic concepts of solid mechanics and mechanical behavior of materials | stress-strain relationships | stress-strain relationships | stress transformation | stress transformation | elasticity | elasticity | plasticity and fracture. Case studies include materials selection for bicycle frames | plasticity and fracture. Case studies include materials selection for bicycle frames | stress shielding in biomedical implants; residual stresses in thin films; and ancient materials. Lab experiments and demonstrations give hands-on experience of the physical concepts at a variety of length scales. Use of facilities for measuring mechanical properties including standard mechanical tests | stress shielding in biomedical implants; residual stresses in thin films; and ancient materials. Lab experiments and demonstrations give hands-on experience of the physical concepts at a variety of length scales. Use of facilities for measuring mechanical properties including standard mechanical tests | bubble raft models | bubble raft models | atomic force microscopy and nanoindentation. | atomic force microscopy and nanoindentation. | plasticity and fracture | plasticity and fracture | Case studies | Case studies | materials selection | materials selection | bicycle frames | bicycle frames | stress shielding in biomedical implants | stress shielding in biomedical implants | residual stresses in thin films | residual stresses in thin films | ancient materials | ancient materials | standard mechanical tests | standard mechanical tests | solid mechanics | solid mechanics | mechanical behavior of materials | mechanical behavior of materials

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.422 Human Supervisory Control of Automated Systems (MIT) 16.422 Human Supervisory Control of Automated Systems (MIT)

Description

Human Supervisory Control of Automated Systems discusses elements of the interactions between humans and machines.  These elements include: assignment of roles and authority; tradeoffs between human control and human monitoring; and human intervention in automatic processes.  Further topics comprise: performance, optimization and social implications of the system; enhanced human interfaces; decision aiding; and automated alterting systems.  Topics refer to applications in aerospace, industrial and transportation systems. Human Supervisory Control of Automated Systems discusses elements of the interactions between humans and machines.  These elements include: assignment of roles and authority; tradeoffs between human control and human monitoring; and human intervention in automatic processes.  Further topics comprise: performance, optimization and social implications of the system; enhanced human interfaces; decision aiding; and automated alterting systems.  Topics refer to applications in aerospace, industrial and transportation systems.

Subjects

Human supervisory control | Human supervisory control | Dynamic systems | Dynamic systems | Complex dynamic systems | Complex dynamic systems | Automation | Automation | Automated systems | Automated systems | Decision processes | Decision processes | Man-machine | Man-machine | Supervisory functions | Supervisory functions | Human-centered | Human-centered | Systems engineering design | Systems engineering design | Semi-structured models | Semi-structured models | Tast analysis | Tast analysis | Function allocation | Function allocation | Memory | Memory | Attention | Attention | Classical decision theory | Classical decision theory | Signal detection | Signal detection | Uncertainty | Uncertainty | Naturalistic decision making | Naturalistic decision making | Workload | Workload | Situation awareness | Situation awareness | Aircraft displays | Aircraft displays | Flight management systems | Flight management systems | Human error | Human error | Reliability | Reliability | Cooperative decision support | Cooperative decision support | Adaptive automation | Adaptive automation | Alerting systems | Alerting systems | Command and control | Command and control | Air traffic control | Air traffic control | Unmanned space vehicles | Unmanned space vehicles | Automobile systems | Automobile systems | Telemedicine | Telemedicine | Telerobotics | Telerobotics | Medical interface design | Medical interface design | Nuclear control plants | Nuclear control plants | Process control plants | Process control plants

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Industrial utilization of medicinal and aromatic plants Industrial utilization of medicinal and aromatic plants

Description

Medicinal aromatic plants belong to a big plant group with a great interest due to its pharmaceutical, cosmetic and nutritional application. In addition, they are also an alternative to traditional crop with species in high demand at the current international market. It is expected to provide basic knowledge and skills related to production and chemical features of essences and extracts from local plants in Iberian Peninsula. The main purpose of this course is that students have an approach to economical importance, uses, botany and harvested processes of the most significant medicinal aromatic and seasoning specie plants. The objectives of this course are: * To classify and identify aromatic plant, seasonings and medicinal plant. * To understand cultivation techniques and effe Medicinal aromatic plants belong to a big plant group with a great interest due to its pharmaceutical, cosmetic and nutritional application. In addition, they are also an alternative to traditional crop with species in high demand at the current international market. It is expected to provide basic knowledge and skills related to production and chemical features of essences and extracts from local plants in Iberian Peninsula. The main purpose of this course is that students have an approach to economical importance, uses, botany and harvested processes of the most significant medicinal aromatic and seasoning specie plants. The objectives of this course are: * To classify and identify aromatic plant, seasonings and medicinal plant. * To understand cultivation techniques and effe

Subjects

Ingeniería Agroforestal | Ingeniería Agroforestal | medicinal plants | medicinal plants | aromatic plants | aromatic plants | extracts | extracts | active principles | active principles | essential oils | essential oils

License

Copyright 2009, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.upm.es/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Plantas de Interés Agroalimentario Plantas de Interés Agroalimentario

Description

La asignatura Plantas de Interés Agroalimentario es una asignatura de libre elección de 2º ciclo de la titulación de Ingenieros Agrónomos de la Universidad Politécnica de Madrid. Los alumnos que acceden a ella han cursado la asignatura de Biología de 1º curso, y algunos también la Biología Vegetal de 2º curso. Esta asignatura aporta a los estudiantes unos conocimientos diferentes a los cursados en las demás disciplinas de la carrera, ya que aprenden el origen y la distribución de las principales especies a lo largo de la historia, el interés de estas plantas en España y en el mundo, sus usos y aplicaciones, y además adquieren conocimientos sobre algunas plantas que solo se explican en esta asignatura, pero que tienen gran importancia económica en otros países. La asigna La asignatura Plantas de Interés Agroalimentario es una asignatura de libre elección de 2º ciclo de la titulación de Ingenieros Agrónomos de la Universidad Politécnica de Madrid. Los alumnos que acceden a ella han cursado la asignatura de Biología de 1º curso, y algunos también la Biología Vegetal de 2º curso. Esta asignatura aporta a los estudiantes unos conocimientos diferentes a los cursados en las demás disciplinas de la carrera, ya que aprenden el origen y la distribución de las principales especies a lo largo de la historia, el interés de estas plantas en España y en el mundo, sus usos y aplicaciones, y además adquieren conocimientos sobre algunas plantas que solo se explican en esta asignatura, pero que tienen gran importancia económica en otros países. La asigna

Subjects

plantas alimentarias | plantas alimentarias | Producción Vegetal | Producción Vegetal | Botánica | Botánica | Etnobotany | Etnobotany | Tecnología de Alimentos | Tecnología de Alimentos | Economic botany | Economic botany | etnobotánica | etnobotánica | Nutrición y Bromatología | Nutrición y Bromatología | food plants | food plants | materias primas vegetales | materias primas vegetales | Plantas de interés agroalimentario | Plantas de interés agroalimentario | Botánica económica | Botánica económica

License

Copyright 2009, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.upm.es/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Elec. Light - Ice Plant And - Water Works. Arlington Tex. Elec. Light - Ice Plant And - Water Works. Arlington Tex.

Description

Subjects

streets | streets | cities | cities | towns | towns | rppc | rppc | electricpowerplants | electricpowerplants | hydroelectricpowerplants | hydroelectricpowerplants

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=41131493@N06&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Fashion model - Fort Lauderdale Fashion model - Fort Lauderdale

Description

Subjects

plants | plants | beer | beer | fashion | fashion | bars | bars | florida | florida | models | models | liquor | liquor | pottedplants | pottedplants | fortlauderdale | fortlauderdale | leopardskinfabric | leopardskinfabric

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.782J Design of Medical Devices and Implants (MIT)

Description

Solution of clinical problems by use of implants and other medical devices. Systematic use of cell-matrix control volumes. The role of stress analysis in the design process. Anatomic fit: shape and size of implants. Selection of biomaterials. Instrumentation for surgical implantation procedures. Preclinical testing for safety and efficacy: risk/benefit ratio assessment. Evaluation of clinical performance: design of clinical trials. Project materials drawn from orthopedic devices, soft tissue implants, artificial organs, and dental implants.

Subjects

clinical problems | implants | medical devices | cell-matrix control volumes | stress analysis | Anatomic fit | biomaterials | surgical implantation procedures | Preclinical testing | risk/benefit ratio assessment | clinical performance | clinical trials | orthopedic devices | soft tissue implants | artificial organs | dental implants | BE.451J | 2.782 | 3.961 | BE.451 | HST.524 | 20.451

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Mount Airy Plantation (Colonel John Tayloe Plantation). Group Plan, Buildings and Gardens

Description

Collection: A. D. White Architectural Photographs, Cornell University Library Accession Number: 15/5/3090.00568 Title: Mount Airy Plantation (Colonel John Tayloe Plantation). Group Plan, Buildings and Gardens Architect: John Ariss Building Date: ca. 1758 Photograph date: ca. 1910-ca. 1950 Location: North and Central America: United States; Virginia, Richmond County Materials: gelatin silver print Image: 9 x 6 3/4 in.; 22.86 x 17.145 cm Provenance: Transfer from the College of Architecture, Art and Planning Persistent URI: hdl.handle.net/1813.001/5spj There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source. We had some help with the geocoding from Web Services by Yahoo!

Subjects

cornelluniversitylibrary | architectureplans | gardens | architecturaldrawings | mountairyplantationrichmondcountyvirginia | coloneljohntayloeplantationrichmondcountyvirginia | plantations | culidentifier:value=155309000568 | culidentifier:lunafield=accessionnumber

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Curated collection of Plant Sciences resources

Description

This is an evaluated collection of links to resources for learning and teaching subjects relating to Plant Sciences. This forms part of the UK Centre for Bioscience OeRBITAL project.

Subjects

ukoer | biotechnology | oerbital | plant sciences | physiology | taxonomy | evolution | plant anatomy | plant biochemistry | Biological sciences | C000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Environmental Services: Establishing Planted Areas: Bare Root Trees (Unit 310)

Description

The resource can also be found at www.paddockelearning.org.uk, together with other interactive video packages relating to the Units within the Cleaning and Environmental Services Level 2 apprenticeship.

Subjects

Horticulture | environment | bare root trees | planting | preparation | hand tools | tree planting | planting techniques | ILRforSkills

License

Attribution-NonCommercial 4.0 International Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/ http://creativecommons.org/licenses/by-nc/4.0/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Environmental Services: Establishing Planted Areas: Cell Grown Trees (Unit 310)

Description

The resource can also be found at www.paddockelearning.org.uk, together with other interactive video packages relating to the Units within the Cleaning and Environmental Services Level 2 apprenticeship.

Subjects

Horticulture | environment | cell grown trees | planting | preparation | hand tools | tree planting | planting techniques | tree mesh | conifers | evergreens | tree protection | tree support | ILRforSkills

License

Attribution-NonCommercial 4.0 International Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/ http://creativecommons.org/licenses/by-nc/4.0/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Environmental Services: Establishing Planted Areas: Protecting Saplings (Unit 310)

Description

The resource can also be found at www.paddockelearning.org.uk, together with other interactive video packages relating to the Units within the Cleaning and Environmental Services Level 2 apprenticeship.

Subjects

Horticulture | environment | protecting saplings | saplings | planting | preparation | hand tools | planting techniques | plant protection | tree stakes | tree support | ILRforSkills

License

Attribution-NonCommercial 4.0 International Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/ http://creativecommons.org/licenses/by-nc/4.0/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.152J Microelectronics Processing Technology (MIT)

Description

This course introduces the theory and technology of micro/nano fabrication. Lectures and laboratory sessions focus on basic processing techniques such as diffusion, oxidation, photolithography, chemical vapor deposition, and more. Through team lab assignments, students are expected to gain an understanding of these processing techniques, and how they are applied in concert to device fabrication. Students enrolled in this course have a unique opportunity to fashion and test micro/nano-devices, using modern techniques and technology.

Subjects

microelectronics | Microelectronics processing | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | integrated circuits;vacuum;chemical vapor deposition;CVD;oxidation;diffusion;implantation;lithography;soft lithography;etching;sputtering;evaporation;interconnect;metallization;crystal growth;reliability;fabrication;processing;photolithography;physical vapor deposition;MOS;MOS capacitor;microcantilever;microfluidic | integrated circuits | vacuum | chemical vapor deposition | CVD | oxidation | diffusion | implantation | lithography | soft lithography | etching | sputtering | evaporation | interconnect | metallization | crystal growth | reliability | fabrication | processing | photolithography | physical vapor deposition | MOS | MOS capacitor | microcantilever | microfluidic | 6.152 | 3.155

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

21H.421 Introduction to Environmental History (MIT) 21H.421 Introduction to Environmental History (MIT)

Description

This seminar provides a historical overview of the interactions between people and their environments. Focusing primarily on the experience of Europeans in the period after Columbus, the subject explores the influence of nature (climate, topography, plants, animals, and microorganisms) on human history and the reciprocal influence of people on nature. Topics include the biological consequences of the European encounter with the Americas, the environmental impact of technology, and the roots of the current environmental crisis. This seminar provides a historical overview of the interactions between people and their environments. Focusing primarily on the experience of Europeans in the period after Columbus, the subject explores the influence of nature (climate, topography, plants, animals, and microorganisms) on human history and the reciprocal influence of people on nature. Topics include the biological consequences of the European encounter with the Americas, the environmental impact of technology, and the roots of the current environmental crisis.

Subjects

environmental history | environmental history | europe | europe | columbus | columbus | climate | climate | topography | topography | nature | nature | plants | plants | animals | animals | microorganisms | microorganisms | human history | human history | americas | americas | technology impact | technology impact | crisis | crisis | wilderness | wilderness | garden | garden | science | science | landscape | landscape | agriculture | agriculture | poison | poison | conservation | conservation | preservation | preservation | demography | demography | industry | industry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

9.14 Brain Structure and its Origins (MIT) 9.14 Brain Structure and its Origins (MIT)

Description

This course covers major CNS structures with emphasis on systems being used as models for experimental studies of development and plasticity. Topics include basic patterns of connections in CNS, embryogenesis, PNS anatomy and development, process outgrowth and synaptogenesis, growth factors and cell survival, spinal and hindbrain anatomy, and development of regional specificity with an introduction to comparative anatomy and CNS evolution. A review of lab techniques (anatomy, tissue culture) is also covered as well as the trigeminal system, retinotectal system development, plasticity, regeneration, neocortex anatomy and development, the olfactory system, corpus striatum, brain transplants, the limbic system and hippocampal anatomy and plasticity. This course covers major CNS structures with emphasis on systems being used as models for experimental studies of development and plasticity. Topics include basic patterns of connections in CNS, embryogenesis, PNS anatomy and development, process outgrowth and synaptogenesis, growth factors and cell survival, spinal and hindbrain anatomy, and development of regional specificity with an introduction to comparative anatomy and CNS evolution. A review of lab techniques (anatomy, tissue culture) is also covered as well as the trigeminal system, retinotectal system development, plasticity, regeneration, neocortex anatomy and development, the olfactory system, corpus striatum, brain transplants, the limbic system and hippocampal anatomy and plasticity.

Subjects

CNS structures | CNS structures | development | development | plasticity | plasticity | anatomy | anatomy | tissue culture | tissue culture | embryogenesis | embryogenesis | PNS anatomy and development | PNS anatomy and development | process outgrowth | process outgrowth | synaptogenesis | synaptogenesis | growth factors | growth factors | cell survival | cell survival | spinal and hindbrain anatomy | spinal and hindbrain anatomy | comparative anatomy | comparative anatomy | CNS evolution | CNS evolution | trigeminal system | trigeminal system | retinotectal system | retinotectal system | regeneration | regeneration | neocortex anatomy | neocortex anatomy | olfactory system | olfactory system | corpus striatum | corpus striatum | brain transplants | brain transplants | limbic system | limbic system | Development | Development

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.006J Bioethics (MIT) STS.006J Bioethics (MIT)

Description

Many difficult ethical questions have arisen from the explosive growth of biomedical research and the health-care industry since World War II. When and how should doctors be allowed to help patients end their lives? Should embryos be cloned for research and/or reproduction? Should parents be given control over the genetic make-up of their children? What sorts of living things is it appropriate to use as research subjects? How should we distribute scarce and expensive medical resources? While some of these questions are genuinely new, products of rapid changes in biomedical technology, others have been debated for centuries. Drawing on philosophy, history, and anthropology, this course will show students how problems in bioethics can be approached from a variety of perspectives, with the ai Many difficult ethical questions have arisen from the explosive growth of biomedical research and the health-care industry since World War II. When and how should doctors be allowed to help patients end their lives? Should embryos be cloned for research and/or reproduction? Should parents be given control over the genetic make-up of their children? What sorts of living things is it appropriate to use as research subjects? How should we distribute scarce and expensive medical resources? While some of these questions are genuinely new, products of rapid changes in biomedical technology, others have been debated for centuries. Drawing on philosophy, history, and anthropology, this course will show students how problems in bioethics can be approached from a variety of perspectives, with the ai

Subjects

medical ethics | medical ethics | ethics | ethics | genetics | genetics | stem cell | stem cell | GM | GM | genetically modified | genetically modified | genetic engineering | genetic engineering | risk | risk | biomedical | biomedical | medicine | medicine | cloning | cloning | euthanasia | euthanasia | abortion | abortion | eugenics | eugenics | slippery slope | slippery slope | organ transplant | organ transplant | organ donor | organ donor | disease | disease | public health | public health | health care | health care

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.39 Integration of Reactor Design, Operations, and Safety (MIT) 22.39 Integration of Reactor Design, Operations, and Safety (MIT)

Description

This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.Technical RequirementsSpecial software is required to use some of the files in this course: .exe and .zip. The .in files are input data files. This course integrates studies of engineering sciences, reactor physics and safety assessment into nuclear power plant design. Topics include materials issues in plant design and operations, aspects of thermal design, fuel depletion and fission-product poisoning, and temperature effects on reactivity, safety considerations in regulations and operations, such as the evolution of the regulatory process, the concept of defense in depth, General Design Criteria, accident analysis, probabilistic risk assessment, and risk-informed regulations.Technical RequirementsSpecial software is required to use some of the files in this course: .exe and .zip. The .in files are input data files.

Subjects

nuclear reactor | nuclear reactor | nuclear power | nuclear power | NRC | NRC | PWR | PWR | pressurized water reactor | pressurized water reactor | GFR | GFR | nuclear safety | nuclear safety | meltdown | meltdown | nuclear risk | nuclear risk | PRA | PRA | probabalistic risk assessment | probabalistic risk assessment | risk assessment | risk assessment | thermal | thermal | hydraulic | hydraulic | nuclear fuel | nuclear fuel | nuclear waste | nuclear waste | accident | accident | radiation | radiation | radioactivity | radioactivity | nuclear plant | nuclear plant | cooling | cooling | seabrook | seabrook | fission | fission | uranium | uranium | half-life | half-life | plutonium | plutonium

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.314J Structural Mechanics in Nuclear Power Technology (MIT) 22.314J Structural Mechanics in Nuclear Power Technology (MIT)

Description

This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects.This class was also offered in Course 13 (Department of Ocean Engineering) as 13.14J. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and the 13.14J designation was dropped in lieu of 2.084J. This course deals with structural components in nuclear power plant systems, their functional purposes, operating conditions, and mechanical-structural design requirements. It combines mechanics techniques with models of material behavior to determine adequacy of component design. Considerations include mechanical loading, brittle fracture, in-elastic behavior, elevated temperatures, neutron irradiation, and seismic effects.This class was also offered in Course 13 (Department of Ocean Engineering) as 13.14J. In 2005, ocean engineering subjects became part of Course 2 (Department of Mechanical Engineering), and the 13.14J designation was dropped in lieu of 2.084J.

Subjects

nuclear power plant systems | nuclear power plant systems | structure | functions | operating conditions and mechanical structural design requirements | structure | functions | operating conditions and mechanical structural design requirements | modelling | modelling | component design | component design | mechanical loading | mechanical loading | brittle fracture | inelastic behaviour | brittle fracture | inelastic behaviour | elevated temperature | elevated temperature | neutron irradiation | neutron irradiation | seismic effect | seismic effect | structure | function | operating conditions | and mechanical-structural design requirements | structure | function | operating conditions | and mechanical-structural design requirements | brittle fracture | inelastic behavior | brittle fracture | inelastic behavior | 13.14J | 13.14J | 22.314 | 22.314 | 1.56 | 1.56 | 2.084 | 2.084 | 13.14 | 13.14

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.723 Neural Coding and Perception of Sound (MIT) HST.723 Neural Coding and Perception of Sound (MIT)

Description

Neural structures and mechanisms mediating the detection, localization and recognition of sounds. We will discuss how acoustic signals are coded by auditory neurons, the impact of these codes on behavioral performance, and the circuitry and cellular mechanisms underlying signal transformations. Topics include temporal coding, neural maps and feature detectors, learning and plasticity, and feedback control. General principles are conveyed by theme discussions of auditory masking, sound localization, musical pitch, speech coding, and cochlear implants. Neural structures and mechanisms mediating the detection, localization and recognition of sounds. We will discuss how acoustic signals are coded by auditory neurons, the impact of these codes on behavioral performance, and the circuitry and cellular mechanisms underlying signal transformations. Topics include temporal coding, neural maps and feature detectors, learning and plasticity, and feedback control. General principles are conveyed by theme discussions of auditory masking, sound localization, musical pitch, speech coding, and cochlear implants.

Subjects

hearing | hearing | neural structures | neural structures | auditory masking | auditory masking | acoustics | acoustics | signal transformations | signal transformations | temporal coding | temporal coding | neural maps | neural maps | feature detectors | feature detectors | learning | learning | plasticity | plasticity | feedback control | feedback control | sound localization | sound localization | musical pitch | musical pitch | speech coding | speech coding | cochlear implants | cochlear implants

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata