Searching for protein structure : 51 results found | RSS Feed for this search

1 2

7.89 Topics in Computational and Systems Biology (MIT) 7.89 Topics in Computational and Systems Biology (MIT)

Description

This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB PhD program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology. Acknowledgments In addition to the staff listed on this page, the followi This is a seminar based on research literature. Papers covered are selected to illustrate important problems and approaches in the field of computational and systems biology, and provide students a framework from which to evaluate new developments. The MIT Initiative in Computational and Systems Biology (CSBi) is a campus-wide research and education program that links biology, engineering, and computer science in a multidisciplinary approach to the systematic analysis and modeling of complex biological phenomena. This course is one of a series of core subjects offered through the CSB PhD program, for students with an interest in interdisciplinary training and research in the area of computational and systems biology. Acknowledgments In addition to the staff listed on this page, the followi

Subjects

computational | computational | systems | systems | biology | biology | seminar | seminar | literature review | literature review | statistics | statistics | developmental | developmental | biochemistry | biochemistry | genetics | genetics | physics | physics | genomics | genomics | signal transduction | signal transduction | regulation | regulation | medicine | medicine | kinetics | kinetics | protein structure | protein structure | devices | devices | synthesis | synthesis | networks | networks | mapping | mapping

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.011J Statistical Thermodynamics of Biomolecular Systems (MIT) BE.011J Statistical Thermodynamics of Biomolecular Systems (MIT)

Description

This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, chemical potentials, equilibrium states, binding cooperativity, behavior of macromolecules in solution and at interfaces, and solvation. Example problems include protein structure, genomic analysis, single molecule biomechanics, and biomaterials.Technical RequirementsMATLAB® software is required to run the .m and .fig files found on this course site. This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, chemical potentials, equilibrium states, binding cooperativity, behavior of macromolecules in solution and at interfaces, and solvation. Example problems include protein structure, genomic analysis, single molecule biomechanics, and biomaterials.Technical RequirementsMATLAB® software is required to run the .m and .fig files found on this course site.

Subjects

physical chemistry of biological systems | physical chemistry of biological systems | macroscopic thermodynamic properties | macroscopic thermodynamic properties | microscopic molecular properties | microscopic molecular properties | statistical mechanics | statistical mechanics | chemical potentials | chemical potentials | equilibrium states | equilibrium states | binding cooperativity | binding cooperativity | behavior of macromolecules in solution and at interfaces | behavior of macromolecules in solution and at interfaces | solvation | solvation | protein structure | protein structure | genomic analysis | genomic analysis | single molecule biomechanics | single molecule biomechanics | biomaterials | biomaterials | 2.772J | 2.772J | BE.011 | BE.011 | 2.772 | 2.772

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT) 7.012 Introduction to Biology (MIT)

Description

All three courses: 7.012, 7.013 and 7.014 cover the same core material which includes: the fundamental principles of biochemistry as they apply to introductory biology, genetics, molecular biology, basic recombinant DNA technology, and gene regulation.In addition, each version of the subject has its own distinctive material, described below. Note: All three versions require a familiarity with some basic chemistry. For details, see the Chemistry Self-evaluation.7.012 focuses on cell biology, immunology, neurobiology, and includes an exploration into current research in cancer, genomics, and molecular medicine. 7.013 focuses on the application of the fundamental principles toward an understanding of cells, human genetics and diseases, infectious agents, cancer, immunology, molecular All three courses: 7.012, 7.013 and 7.014 cover the same core material which includes: the fundamental principles of biochemistry as they apply to introductory biology, genetics, molecular biology, basic recombinant DNA technology, and gene regulation.In addition, each version of the subject has its own distinctive material, described below. Note: All three versions require a familiarity with some basic chemistry. For details, see the Chemistry Self-evaluation.7.012 focuses on cell biology, immunology, neurobiology, and includes an exploration into current research in cancer, genomics, and molecular medicine. 7.013 focuses on the application of the fundamental principles toward an understanding of cells, human genetics and diseases, infectious agents, cancer, immunology, molecular

Subjects

amino acids | amino acids | biochemistry | biochemistry | cancer | cancer | cell biology | cell biology | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | DNA | DNA | endoplasmic reticulum | endoplasmic reticulum | gene regulation | gene regulation | gene structure | gene structure | genetics | genetics | genomics | genomics | immunology | immunology | molecular biology | molecular biology | molecular medicine | molecular medicine | mRNA | mRNA | nervous system | nervous system | neurobiology | neurobiology | PCR | PCR | polymerase chain reaction | polymerase chain reaction | polypeptide chain | polypeptide chain | protein localization | protein localization | protein structure | protein structure | protein synthesis | protein synthesis | proteins | proteins | recombinant DNA | recombinant DNA | replication | replication | ribosome | ribosome | RNA | RNA | stem cells | stem cells | transcription | transcription | translation | translation | virology | virology | biology | biology

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer),

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT) 7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | microorganisms | geochemistry | geochemistry | geochemical agents | geochemical agents | biosphere | biosphere | bacterial genetics | bacterial genetics | carbon metabolism | carbon metabolism | energy metabolism | energy metabolism | productivity | productivity | biogeochemical cycles | biogeochemical cycles | molecular evolution | molecular evolution | population genetics | population genetics | evolution | evolution | population growth | population growth | biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | ecology | ecology | communities | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT) 7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.76 Multi-Scale System Design (MIT) 2.76 Multi-Scale System Design (MIT)

Description

Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials Multi-scale systems (MuSS) consist of components from two or more length scales (nano, micro, meso, or macro-scales). In MuSS, the engineering modeling, design principles, and fabrication processes of the components are fundamentally different. The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples of MuSS include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS (piezoelectric driven manipulators and optics), X-Ray telescopes and carbon nano-tube assemblies. Students master the materials

Subjects

scale | scale | complexity | complexity | nano | micro | meso | or macro-scale | nano | micro | meso | or macro-scale | kinematics | kinematics | metrology | metrology | engineering modeling | motion | engineering modeling | motion | modeling | modeling | design | design | manufacture | manufacture | design principles | design principles | fabrication process | fabrication process | functional requirements | functional requirements | precision instruments | precision instruments | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | nanomanipulators | fiber optics | micro- photonics | nano-photonics | nanorobotics | MEMS | piezoelectric | transducer | actuator | sensor | piezoelectric | transducer | actuator | sensor | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constraint | rigid constraint | flexible constraint | ride-flexible constraint | constaint-based design | constaint-based design | carbon nanotube | carbon nanotube | nanowire | nanowire | scanning tunneling microscope | scanning tunneling microscope | flexure | flexure | protein structure | protein structure | polymer structure | polymer structure | nanopelleting | nanopipette | nanowire | nanopelleting | nanopipette | nanowire | TMA pixel array | TMA pixel array | error modeling | error modeling | repeatability | repeatability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.013 Introductory Biology (MIT) 7.013 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In add The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. 7.013 focuses on the application of the fundamental principles toward an understanding of human biology. Topics include genetics, cell biology, molecular biology, disease (infectious agents, inherited diseases and cancer), developmental biology, neurobiology and evolution.Biological function at the molecular level is particularly emphasized in all courses and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In add

Subjects

biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | human biology | human biology | inherited diseases | inherited diseases | developmental biology | developmental biology | evolution | evolution | human genetics | human genetics | human diseases | human diseases | infectious agents | infectious agents | infectious diseases | infectious diseases

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Protein Folding, Misfolding and Human Disease (MIT) 7.343 Protein Folding, Misfolding and Human Disease (MIT)

Description

This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. The instructor for this course, Dr. Kosinski-Collins, is a member of the HHMI Education Group. Maintenance of the complex three-dimensional structure adopted by a protein in the cell is vital for function. Oftentimes, as a consequence of environmental stress, genetic mutation, and/or infection, the folded structure of a protein gets altered and multiple proteins stick and fall out of solution in a process known as aggregation. In many protein aggregation diseases, incorrectly folded proteins self-associate, for This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. The instructor for this course, Dr. Kosinski-Collins, is a member of the HHMI Education Group. Maintenance of the complex three-dimensional structure adopted by a protein in the cell is vital for function. Oftentimes, as a consequence of environmental stress, genetic mutation, and/or infection, the folded structure of a protein gets altered and multiple proteins stick and fall out of solution in a process known as aggregation. In many protein aggregation diseases, incorrectly folded proteins self-associate, for

Subjects

protein folding | protein folding | misfolded proteins | misfolded proteins | Mad Cow | Mad Cow | Creutzfedt-Jakob Disease | Creutzfedt-Jakob Disease | Alzheimer's Disease | Alzheimer's Disease | Huntington's Disease | Huntington's Disease | protein aggregation | protein aggregation | self-associate | self-associate | cell death | cell death | dementia | dementia | prions | prions | bovine spongiform encephalopathy | bovine spongiform encephalopathy | kuru | kuru | scrapie | scrapie | protein structure | protein structure | amyloid protein | amyloid protein | amyloidosis | amyloidosis | polyglutamine repeats | polyglutamine repeats | fibrils | fibrils

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.417 Introduction to Computational Molecular Biology (MIT) 18.417 Introduction to Computational Molecular Biology (MIT)

Description

This course introduces the basic computational methods used to understand the cell on a molecular level. It covers subjects such as the sequence alignment algorithms: dynamic programming, hashing, suffix trees, and Gibbs sampling. Furthermore, it focuses on computational approaches to: genetic and physical mapping; genome sequencing, assembly, and annotation; RNA expression and secondary structure; protein structure and folding; and molecular interactions and dynamics. This course introduces the basic computational methods used to understand the cell on a molecular level. It covers subjects such as the sequence alignment algorithms: dynamic programming, hashing, suffix trees, and Gibbs sampling. Furthermore, it focuses on computational approaches to: genetic and physical mapping; genome sequencing, assembly, and annotation; RNA expression and secondary structure; protein structure and folding; and molecular interactions and dynamics.

Subjects

basic computational methods cell on a molecular level | basic computational methods cell on a molecular level | sequence alignment algorithms | sequence alignment algorithms | dynamic programming | dynamic programming | hashing | hashing | suffix trees | suffix trees | Gibbs sampling | Gibbs sampling | genetic and physical mapping | genetic and physical mapping | genome sequencing | genome sequencing | assembly | assembly | and annotation | and annotation | RNA expression and secondary structure | RNA expression and secondary structure | protein structure and folding | protein structure and folding | and molecular interactions and dynamics | and molecular interactions and dynamics | annotation | annotation | molecular interactions and dynamics | molecular interactions and dynamics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.011J Statistical Thermodynamics of Biomolecular Systems (BE.011J) (MIT) 20.011J Statistical Thermodynamics of Biomolecular Systems (BE.011J) (MIT)

Description

This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, chemical potentials, equilibrium states, binding cooperativity, behavior of macromolecules in solution and at interfaces, and solvation. Example problems include protein structure, genomic analysis, single molecule biomechanics, and biomaterials. This course provides an introduction to the physical chemistry of biological systems. Topics include: connection of macroscopic thermodynamic properties to microscopic molecular properties using statistical mechanics, chemical potentials, equilibrium states, binding cooperativity, behavior of macromolecules in solution and at interfaces, and solvation. Example problems include protein structure, genomic analysis, single molecule biomechanics, and biomaterials.

Subjects

physical chemistry of biological systems | physical chemistry of biological systems | macroscopic thermodynamic properties | macroscopic thermodynamic properties | microscopic molecular properties | microscopic molecular properties | statistical mechanics | statistical mechanics | chemical potentials | chemical potentials | equilibrium states | equilibrium states | binding cooperativity | binding cooperativity | behavior of macromolecules in solution and at interfaces | behavior of macromolecules in solution and at interfaces | solvation | solvation | protein structure | protein structure | genomic analysis | genomic analysis | single molecule biomechanics | single molecule biomechanics | biomaterials | biomaterials | BE.011J | BE.011J | BE.011 | BE.011 | 2.772 | 2.772

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.508 Quantitative Genomics (MIT) HST.508 Quantitative Genomics (MIT)

Description

This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation. This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation.

Subjects

genomics | genomics | quantitative genomics | quantitative genomics | comparative genomics | comparative genomics | genes | genes | genome | genome | SNPs | SNPs | haplotypes | haplotypes | sequence alignment | sequence alignment | protein structure | protein structure | protein folding | protein folding | proteomics | proteomics | structural genomics | structural genomics | functional genomics | functional genomics | networks | networks | systems biology | systems biology | biological networks | biological networks | RNA | RNA | DNA | DNA | gene expression | gene expression | evolutionary genetics | evolutionary genetics | population genetics | population genetics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Membrane proteins and drug development

Description

Dr Liz Carpenter talks about her research on membrane proteins and drug development. Membrane proteins are the gateways to our cells - with nutrients, waste products, and even DNA and proteins entering and leaving cells via these tightly controlled proteins. Drugs often target membrane proteins; therefore, understanding their molecular structure helps us design better drugs. Dr Liz Carpenter uses X-ray crystallography to solve membrane protein structures. This information is then used to improve treatments for heart disease and neurological diseases. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

membrane proteins | protein structure | high-throughput | drug discovery | ion channel | x-ray crystallography | membrane proteins | protein structure | high-throughput | drug discovery | ion channel | x-ray crystallography

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/audio.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Membrane proteins and drug development

Description

Dr Liz Carpenter talks about her research on membrane proteins and drug development. Membrane proteins are the gateways to our cells - with nutrients, waste products, and even DNA and proteins entering and leaving cells via these tightly controlled proteins. Drugs often target membrane proteins; therefore, understanding their molecular structure helps us design better drugs. Dr Liz Carpenter uses X-ray crystallography to solve membrane protein structures. This information is then used to improve treatments for heart disease and neurological diseases. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

membrane proteins | protein structure | high-throughput | drug discovery | ion channel | x-ray crystallography | membrane proteins | protein structure | high-throughput | drug discovery | ion channel | x-ray crystallography

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.91J Foundations of Computational and Systems Biology (MIT) 7.91J Foundations of Computational and Systems Biology (MIT)

Description

This course is an introduction to computational biology emphasizing the fundamentals of nucleic acid and protein sequence and structural analysis; it also includes an introduction to the analysis of complex biological systems. Topics covered in the course include principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction and network modeling, as well as currently emerging research areas. This course is an introduction to computational biology emphasizing the fundamentals of nucleic acid and protein sequence and structural analysis; it also includes an introduction to the analysis of complex biological systems. Topics covered in the course include principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction and network modeling, as well as currently emerging research areas.

Subjects

7.91 | 7.91 | 20.490 | 20.490 | 20.390 | 20.390 | 7.36 | 7.36 | 6.802 | 6.802 | 6.874 | 6.874 | HST.506 | HST.506 | computational biology | computational biology | systems biology | systems biology | bioinformatics | bioinformatics | artificial intelligence | artificial intelligence | sequence analysis | sequence analysis | proteomics | proteomics | sequence alignment | sequence alignment | protein folding | protein folding | structure prediction | structure prediction | network modeling | network modeling | phylogenetics | phylogenetics | pairwise sequence comparisons | pairwise sequence comparisons | ncbi | ncbi | blast | blast | protein structure | protein structure | dynamic programming | dynamic programming | genome sequencing | genome sequencing | DNA | DNA | RNA | RNA | x-ray crystallography | x-ray crystallography | NMR | NMR | homologs | homologs | ab initio structure prediction | ab initio structure prediction | DNA microarrays | DNA microarrays | clustering | clustering | proteome | proteome | computational annotation | computational annotation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.91J Foundations of Computational and Systems Biology (MIT) 7.91J Foundations of Computational and Systems Biology (MIT)

Description

Serving as an introduction to computational biology, this course emphasizes the fundamentals of nucleic acid and protein sequence analysis, structural analysis, and the analysis of complex biological systems. The principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction, and network modeling are covered. Students are also exposed to currently emerging research areas in the fields of computational and systems biology. Serving as an introduction to computational biology, this course emphasizes the fundamentals of nucleic acid and protein sequence analysis, structural analysis, and the analysis of complex biological systems. The principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction, and network modeling are covered. Students are also exposed to currently emerging research areas in the fields of computational and systems biology.

Subjects

computational biology | computational biology | systems biology | systems biology | bioinformatics | bioinformatics | sequence analysis | sequence analysis | proteomics | proteomics | sequence alignment | sequence alignment | protein folding | protein folding | structure prediction | structure prediction | network modeling | network modeling | phylogenetics | phylogenetics | pairwise sequence comparisons | pairwise sequence comparisons | ncbi | ncbi | blast | blast | protein structure | protein structure | dynamic programming | dynamic programming | genome sequencing | genome sequencing | DNA | DNA | RNA | RNA | x-ray crystallography | x-ray crystallography | NMR | NMR | homologs | homologs | ab initio structure prediction | ab initio structure prediction | DNA microarrays | DNA microarrays | clustering | clustering | proteome | proteome | computational annotation | computational annotation | BE.490J | BE.490J | 7.91 | 7.91 | 7.36 | 7.36 | BE.490 | BE.490 | 20.490 | 20.490

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.88J Protein Folding and Human Disease (MIT) 7.88J Protein Folding and Human Disease (MIT)

Description

This course covers amino acid sequence control of protein folding, misfolding, amyloid polymerization and aggregation. Readings and discussions address topics such as chaperone structure and function, folding and assembly of fibrous proteins, and pathologies associated with protein misfolding and aggregation in Alzheimer's, Parkinson's, Huntington's and other protein deposition diseases. Students are required to write and present a research paper. This course covers amino acid sequence control of protein folding, misfolding, amyloid polymerization and aggregation. Readings and discussions address topics such as chaperone structure and function, folding and assembly of fibrous proteins, and pathologies associated with protein misfolding and aggregation in Alzheimer's, Parkinson's, Huntington's and other protein deposition diseases. Students are required to write and present a research paper.

Subjects

protein folding | protein folding | misfolding | misfolding | aggregation | aggregation | protein structures | protein structures | folding intermediates | folding intermediates | off-pathway aggregation | off-pathway aggregation | amyloid formation | amyloid formation | Key chaperones | Key chaperones | chaperonins | chaperonins | human protein deposition diseases | human protein deposition diseases | Alzheimer’s disease | Alzheimer’s disease | Parkinson’s disease | Parkinson’s disease | Huntington’s disease | Huntington’s disease | amyloids | amyloids | prions | prions | amino acid sequence | amino acid sequence | amyloid polymerization | amyloid polymerization | chaperone structure and function | chaperone structure and function | folding and assembly of fibrous proteins | folding and assembly of fibrous proteins

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

X-rays for drug discovery

Description

Professor Frank von Delft works to ensure that X-ray structures can serve as a routine and predictive tool for generating novel chemistry for targeting proteins. In the process of drug discovery, X-ray crystallography is the most sensitive way to find out which compounds bind to a target protein. Recent advances in technology allow researchers to test many more compounds, much more rapidly. The ultimate aim is to bring much needed new treatments to patients. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

x-ray crystallography | drug discovery | proteins | protein structure | compounds | x-ray crystallography | drug discovery | proteins | protein structure | compounds

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129165/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.91J Foundations of Computational and Systems Biology (MIT)

Description

Serving as an introduction to computational biology, this course emphasizes the fundamentals of nucleic acid and protein sequence analysis, structural analysis, and the analysis of complex biological systems. The principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction, and network modeling are covered. Students are also exposed to currently emerging research areas in the fields of computational and systems biology.

Subjects

computational biology | systems biology | bioinformatics | sequence analysis | proteomics | sequence alignment | protein folding | structure prediction | network modeling | phylogenetics | pairwise sequence comparisons | ncbi | blast | protein structure | dynamic programming | genome sequencing | DNA | RNA | x-ray crystallography | NMR | homologs | ab initio structure prediction | DNA microarrays | clustering | proteome | computational annotation | BE.490J | 7.91 | 7.36 | BE.490 | 20.490

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-simulations.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | geochemistry | geochemical agents | biosphere | bacterial genetics | carbon metabolism | energy metabolism | productivity | biogeochemical cycles | molecular evolution | population genetics | evolution | population growth | biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum | ecology | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allkoreancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allkoreancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.012 Introduction to Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.012 focuses on the exploration of current research in cell biology, immunology, neurobiology, genomics, and molecular medicine.AcknowledgmentsThe study materials, problem sets, and quiz materials used during Fall 2004 for

Subjects

biology | biochemistry | genetics | molecular biology | recombinant DNA | cell cycle | cell signaling | cloning | stem cells | cancer | immunology | virology | genomics | molecular medicine | DNA | RNA | proteins | replication | transcription | mRNA | translation | ribosome | nervous system | amino acids | polypeptide chain | cell biology | neurobiology | gene regulation | protein structure | protein synthesis | gene structure | PCR | polymerase chain reaction | protein localization | endoplasmic reticulum

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.91J Foundations of Computational and Systems Biology (MIT)

Description

Serving as an introduction to computational biology, this course emphasizes the fundamentals of nucleic acid and protein sequence analysis, structural analysis, and the analysis of complex biological systems. The principles and methods used for sequence alignment, motif finding, structural modeling, structure prediction, and network modeling are covered. Students are also exposed to currently emerging research areas in the fields of computational and systems biology.

Subjects

computational biology | systems biology | bioinformatics | sequence analysis | proteomics | sequence alignment | protein folding | structure prediction | network modeling | phylogenetics | pairwise sequence comparisons | ncbi | blast | protein structure | dynamic programming | genome sequencing | DNA | RNA | x-ray crystallography | NMR | homologs | ab initio structure prediction | DNA microarrays | clustering | proteome | computational annotation | BE.490J | 7.91 | 7.36 | BE.490 | 20.490

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata