Searching for reactivity : 21 results found | RSS Feed for this search

1

5.13 Organic Chemistry II (MIT) 5.13 Organic Chemistry II (MIT)

Description

5.13 is an intermediate organic chemistry course that deals primarily with synthesis, structure determination, mechanism, and the relationships between structure and reactivity emphasized. Special topics in organic chemistry are included to illustrate the role of organic chemistry in biological systems, medicine, and in the chemical industry. 5.13 is an intermediate organic chemistry course that deals primarily with synthesis, structure determination, mechanism, and the relationships between structure and reactivity emphasized. Special topics in organic chemistry are included to illustrate the role of organic chemistry in biological systems, medicine, and in the chemical industry.

Subjects

intermediate organic chemistry | intermediate organic chemistry | organic | organic | organic molecules | organic molecules | stereochemistry | stereochemistry | reaction mechanisms | reaction mechanisms | synthesis of organic compounds | synthesis of organic compounds | synthesis | synthesis | structure determination | structure determination | mechanism | mechanism | structure | structure | reactivity | reactivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.12 Organic Chemistry I (MIT) 5.12 Organic Chemistry I (MIT)

Description

This subject deals primarily with the basic principles to understand the structure and reactivity of organic molecules. Emphasis is on substitution and elimination reactions and chemistry of the carbonyl group. The course also provides an introduction to the chemistry of aromatic compounds. This subject deals primarily with the basic principles to understand the structure and reactivity of organic molecules. Emphasis is on substitution and elimination reactions and chemistry of the carbonyl group. The course also provides an introduction to the chemistry of aromatic compounds.

Subjects

organic chemistry | organic chemistry | molecular structure | molecular structure | reactivity | reactivity | organic molecules | organic molecules | substitution reactions | substitution reactions | elimination reactions | elimination reactions | carbonyl group | carbonyl group | aromatic compounds | aromatic compounds

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.13 Organic Chemistry II (MIT) 5.13 Organic Chemistry II (MIT)

Description

This intermediate organic chemistry course focuses on the methods used to identify the structure of organic molecules, advanced principles of organic stereochemistry, organic reaction mechanisms, and methods used for the synthesis of organic compounds. Additional special topics include illustrating the role of organic chemistry in biology, medicine, and industry. This intermediate organic chemistry course focuses on the methods used to identify the structure of organic molecules, advanced principles of organic stereochemistry, organic reaction mechanisms, and methods used for the synthesis of organic compounds. Additional special topics include illustrating the role of organic chemistry in biology, medicine, and industry.

Subjects

intermediate organic chemistry | intermediate organic chemistry | organic molecules | organic molecules | stereochemistry | stereochemistry | reaction mechanisms | reaction mechanisms | synthesis of organic compounds | synthesis of organic compounds | synthesis | synthesis | structure determination | structure determination | mechanism | mechanism | reactivity | reactivity | functional groups | functional groups | NMR | NMR | spectroscopy | spectroscopy | spectrometry | spectrometry | structure elucidation | structure elucidation | infrared spectroscopy | infrared spectroscopy | nuclear magnetic resonance spectroscopy | nuclear magnetic resonance spectroscopy | reactive intermediates | reactive intermediates | carbocations | carbocations | radicals | radicals | aromaticity | aromaticity | conjugated systems | conjugated systems | molecular orbital theory | molecular orbital theory | pericyclic reactions | pericyclic reactions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.12 Organic Chemistry I (MIT) 5.12 Organic Chemistry I (MIT)

Description

5.12 is an introduction to organic chemistry, focusing primarily on the basic principles to understand the structure and reactivity of organic molecules. Emphasis is on substitution and elimination reactions and chemistry of the carbonyl group. The course also provides an introduction to the chemistry of aromatic compounds. 5.12 is an introduction to organic chemistry, focusing primarily on the basic principles to understand the structure and reactivity of organic molecules. Emphasis is on substitution and elimination reactions and chemistry of the carbonyl group. The course also provides an introduction to the chemistry of aromatic compounds.

Subjects

organic chemistry | organic chemistry | structure | structure | reactivity | reactivity | organic molecules | organic molecules | substitution | substitution | carbonyl group | carbonyl group | elimination | elimination

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.520 Molecular Aspects of Chemical Engineering (MIT) 10.520 Molecular Aspects of Chemical Engineering (MIT)

Description

This class covers molecular-level engineering and analysis of chemical processes. The use of chemical bonding, reactivity, and other key concepts in the design and tailoring of organic systems are discussed in this class. Specific class topics include application and development of structure-property relationships, and descriptions of the chemical forces and structural factors that govern supramolecular and interfacial phenomena for molecular and polymeric systems. This class covers molecular-level engineering and analysis of chemical processes. The use of chemical bonding, reactivity, and other key concepts in the design and tailoring of organic systems are discussed in this class. Specific class topics include application and development of structure-property relationships, and descriptions of the chemical forces and structural factors that govern supramolecular and interfacial phenomena for molecular and polymeric systems.

Subjects

molecular-level engineering | molecular-level engineering | analysis of chemical processes | analysis of chemical processes | chemical bonding | chemical bonding | reactivity | reactivity | design of organic systems | design of organic systems | tailoring of organic systems | tailoring of organic systems | application and development of structure-property relationships | application and development of structure-property relationships | descriptions of the chemical forces and structural factors that govern supramolecular and interfacial phenomena for molecular and polymeric systems | descriptions of the chemical forces and structural factors that govern supramolecular and interfacial phenomena for molecular and polymeric systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.675J Computational Quantum Mechanics of Molecular and Extended Systems (MIT) 10.675J Computational Quantum Mechanics of Molecular and Extended Systems (MIT)

Description

The theoretical frameworks of Hartree-Fock theory and density functional theory are presented in this course as approximate methods to solve the many-electron problem. A variety of ways to incorporate electron correlation are discussed. The application of these techniques to calculate the reactivity and spectroscopic properties of chemical systems, in addition to the thermodynamics and kinetics of chemical processes, is emphasized. This course also focuses on cutting edge methods to sample complex hypersurfaces, for reactions in liquids, catalysts and biological systems. The theoretical frameworks of Hartree-Fock theory and density functional theory are presented in this course as approximate methods to solve the many-electron problem. A variety of ways to incorporate electron correlation are discussed. The application of these techniques to calculate the reactivity and spectroscopic properties of chemical systems, in addition to the thermodynamics and kinetics of chemical processes, is emphasized. This course also focuses on cutting edge methods to sample complex hypersurfaces, for reactions in liquids, catalysts and biological systems.

Subjects

quantum mechanics | quantum mechanics | computational quantum mechanics | computational quantum mechanics | molecular systems | molecular systems | extended systems | extended systems | Hartree-Fock theory | Hartree-Fock theory | density functional theory | density functional theory | DFT | DFT | many-electron problem | many-electron problem | electron correlation | electron correlation | chemical systems | chemical systems | reactivity | reactivity | spectroscopic properties | spectroscopic properties | thermodynamics | thermodynamics | kinetics | kinetics | chemical processes | chemical processes | complex hypersurfaces | complex hypersurfaces | CPMD | CPMD | Car-Parrinello Molecular Dynamics | Car-Parrinello Molecular Dynamics | 10.675 | 10.675 | 5.675 | 5.675

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.625 Electrochemical Energy Conversion and Storage: Fundamentals, Materials, and Applications (MIT) 2.625 Electrochemical Energy Conversion and Storage: Fundamentals, Materials, and Applications (MIT)

Description

This course will introduce students to the principles, performance, and challenges of electrochemical and photoelectrochemical devices. This will be done in the context of global energy needs and challenges, and will include an overview of different energy technologies. This course will introduce students to the principles, performance, and challenges of electrochemical and photoelectrochemical devices. This will be done in the context of global energy needs and challenges, and will include an overview of different energy technologies.

Subjects

electrochemistry | electrochemistry | battery | battery | fuel cell | fuel cell | energy | energy | electrodes | electrodes | solid oxide fuel cell | solid oxide fuel cell | lithium ion battery | lithium ion battery | proton exchange membrane | proton exchange membrane | electrical double layer | electrical double layer | chemical equilibrium | chemical equilibrium | chemical potential | chemical potential | catalysis | catalysis | Butler-Volmer model | Butler-Volmer model | electrochemical impedance spectroscopy | electrochemical impedance spectroscopy | kinetics | kinetics | surface reactivity | surface reactivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1252: Corrosion and Corrosion Protection

Description

This lecture outlines the metallurgical principles of corrosion and corrosion protection of aluminium alloys. Basic knowledge of physics and chemistry and some familiarity with TALAT lectures 1201 through 1205 is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | corrosion | crevice corrosion | poultice corrosion | fretting corrosion | stress corrosion | galvanic corrosion | pitting corrosion | intergranular corrosion | exfoliation | kinetic reactivity | electrochemical circuit | electrolytic corrosion | corrosion protection | anodising | chemical conversion coatings | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions

Description

This lecture provides better understanding of the electrochemistry of aluminium; it gives an introduction to the other lectures. Some knowledge in aluminium metallurgy, simple chemistry (thermodynamics and kinetics), electricity and general electrochemistry is assumed.

Subjects

aluminium | aluminum | european aluminium association | EAA | Training in Aluminium Application Technologies | training | metallurgy | technology | lecture | surface treatment | electrochemical principles | aqueous solutions | reactivity | equilibrium conditions | Pourbaix diagram | anodic polarization | cathodic polarization | polarization curve | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/talat.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.675J Computational Quantum Mechanics of Molecular and Extended Systems (MIT)

Description

The theoretical frameworks of Hartree-Fock theory and density functional theory are presented in this course as approximate methods to solve the many-electron problem. A variety of ways to incorporate electron correlation are discussed. The application of these techniques to calculate the reactivity and spectroscopic properties of chemical systems, in addition to the thermodynamics and kinetics of chemical processes, is emphasized. This course also focuses on cutting edge methods to sample complex hypersurfaces, for reactions in liquids, catalysts and biological systems.

Subjects

quantum mechanics | computational quantum mechanics | molecular systems | extended systems | Hartree-Fock theory | density functional theory | DFT | many-electron problem | electron correlation | chemical systems | reactivity | spectroscopic properties | thermodynamics | kinetics | chemical processes | complex hypersurfaces | CPMD | Car-Parrinello Molecular Dynamics | 10.675 | 5.675

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.13 Organic Chemistry II (MIT)

Description

This intermediate organic chemistry course focuses on the methods used to identify the structure of organic molecules, advanced principles of organic stereochemistry, organic reaction mechanisms, and methods used for the synthesis of organic compounds. Additional special topics include illustrating the role of organic chemistry in biology, medicine, and industry.

Subjects

intermediate organic chemistry | organic molecules | stereochemistry | reaction mechanisms | synthesis of organic compounds | synthesis | structure determination | mechanism | reactivity | functional groups | NMR | spectroscopy | spectrometry | structure elucidation | infrared spectroscopy | nuclear magnetic resonance spectroscopy | reactive intermediates | carbocations | radicals | aromaticity | conjugated systems | molecular orbital theory | pericyclic reactions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.12 Organic Chemistry I (MIT)

Description

5.12 is an introduction to organic chemistry, focusing primarily on the basic principles to understand the structure and reactivity of organic molecules. Emphasis is on substitution and elimination reactions and chemistry of the carbonyl group. The course also provides an introduction to the chemistry of aromatic compounds.

Subjects

organic chemistry | structure | reactivity | organic molecules | substitution | carbonyl group | elimination

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 1252: Corrosion and Corrosion Protection

Description

This lecture outlines the metallurgical principles of corrosion and corrosion protection of aluminium alloys. Basic knowledge of physics and chemistry and some familiarity with TALAT lectures 1201 through 1205 is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | corrosion | crevice corrosion | poultice corrosion | fretting corrosion | stress corrosion | galvanic corrosion | pitting corrosion | intergranular corrosion | exfoliation | kinetic reactivity | electrochemical circuit | electrolytic corrosion | corrosion protection | anodising | chemical conversion coatings | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions

Description

This lecture provides better understanding of the electrochemistry of aluminium; it gives an introduction to the other lectures. Some knowledge in aluminium metallurgy, simple chemistry (thermodynamics and kinetics), electricity and general electrochemistry is assumed.

Subjects

aluminium | aluminum | european aluminium association | eaa | talat | training in aluminium application technologies | training | metallurgy | technology | lecture | surface treatment | electrochemical principles | aqueous solutions | reactivity | equilibrium conditions | pourbaix diagram | anodic polarization | cathodic polarization | polarization curve | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Inorganic Chemistry

Description

Inorganic chemistry is a division of chemistry that studies metals, their compounds, and their reactivity. Metal atoms can be bound to other metal atoms in alloys or metal clusters, to nonmetal elements in crystalline rocks, or to small organic molecules, such as a cyclopentadienyl anion in ferrocene. These metal atoms can also be part of large biological molecules, as in the case of iron in hemoglobin (oxygen-carrier protein in the blood). This free course may be completed online at any time. See course site for detailed overview and learning outcomes. (Chemistry 107)

Subjects

inorganic chemistry | configuration | periodic table | bonds | crystals | ionic solids | solid state | acids | bases | enthalpy | alkali metal | reactivity | halogens | Physical sciences | F000

License

Attribution 2.0 UK: England & Wales Attribution 2.0 UK: England & Wales http://creativecommons.org/licenses/by/2.0/uk/ http://creativecommons.org/licenses/by/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.13 Organic Chemistry II (MIT)

Description

5.13 is an intermediate organic chemistry course that deals primarily with synthesis, structure determination, mechanism, and the relationships between structure and reactivity emphasized. Special topics in organic chemistry are included to illustrate the role of organic chemistry in biological systems, medicine, and in the chemical industry.

Subjects

intermediate organic chemistry | organic | organic molecules | stereochemistry | reaction mechanisms | synthesis of organic compounds | synthesis | structure determination | mechanism | structure | reactivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.520 Molecular Aspects of Chemical Engineering (MIT)

Description

This class covers molecular-level engineering and analysis of chemical processes. The use of chemical bonding, reactivity, and other key concepts in the design and tailoring of organic systems are discussed in this class. Specific class topics include application and development of structure-property relationships, and descriptions of the chemical forces and structural factors that govern supramolecular and interfacial phenomena for molecular and polymeric systems.

Subjects

molecular-level engineering | analysis of chemical processes | chemical bonding | reactivity | design of organic systems | tailoring of organic systems | application and development of structure-property relationships | descriptions of the chemical forces and structural factors that govern supramolecular and interfacial phenomena for molecular and polymeric systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.12 Organic Chemistry I (MIT)

Description

This subject deals primarily with the basic principles to understand the structure and reactivity of organic molecules. Emphasis is on substitution and elimination reactions and chemistry of the carbonyl group. The course also provides an introduction to the chemistry of aromatic compounds.

Subjects

organic chemistry | molecular structure | reactivity | organic molecules | substitution reactions | elimination reactions | carbonyl group | aromatic compounds

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.675J Computational Quantum Mechanics of Molecular and Extended Systems (MIT)

Description

The theoretical frameworks of Hartree-Fock theory and density functional theory are presented in this course as approximate methods to solve the many-electron problem. A variety of ways to incorporate electron correlation are discussed. The application of these techniques to calculate the reactivity and spectroscopic properties of chemical systems, in addition to the thermodynamics and kinetics of chemical processes, is emphasized. This course also focuses on cutting edge methods to sample complex hypersurfaces, for reactions in liquids, catalysts and biological systems.

Subjects

quantum mechanics | computational quantum mechanics | molecular systems | extended systems | Hartree-Fock theory | density functional theory | DFT | many-electron problem | electron correlation | chemical systems | reactivity | spectroscopic properties | thermodynamics | kinetics | chemical processes | complex hypersurfaces | CPMD | Car-Parrinello Molecular Dynamics | 10.675 | 5.675

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.13 Organic Chemistry II (MIT)

Description

This intermediate organic chemistry course focuses on the methods used to identify the structure of organic molecules, advanced principles of organic stereochemistry, organic reaction mechanisms, and methods used for the synthesis of organic compounds. Additional special topics include illustrating the role of organic chemistry in biology, medicine, and industry.

Subjects

intermediate organic chemistry | organic molecules | stereochemistry | reaction mechanisms | synthesis of organic compounds | synthesis | structure determination | mechanism | reactivity | functional groups | NMR | spectroscopy | spectrometry | structure elucidation | infrared spectroscopy | nuclear magnetic resonance spectroscopy | reactive intermediates | carbocations | radicals | aromaticity | conjugated systems | molecular orbital theory | pericyclic reactions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

5.12 Organic Chemistry I (MIT)

Description

5.12 is an introduction to organic chemistry, focusing primarily on the basic principles to understand the structure and reactivity of organic molecules. Emphasis is on substitution and elimination reactions and chemistry of the carbonyl group. The course also provides an introduction to the chemistry of aromatic compounds.

Subjects

organic chemistry | structure | reactivity | organic molecules | substitution | carbonyl group | elimination

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata