Searching for relativity : 55 results found | RSS Feed for this search

1 2

8.033 Relativity (MIT) 8.033 Relativity (MIT)

Description

This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology. This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology.

Subjects

relativity | relativity | special relativity | special relativity | Einstein's postulates | Einstein's postulates | simultaneity | simultaneity | time dilation | time dilation | length contraction | length contraction | clock synchronization | clock synchronization | Lorentz transformation | Lorentz transformation | relativistic effects | relativistic effects | Minkowski diagrams | Minkowski diagrams | relativistic invariants | relativistic invariants | four-vectors | four-vectors | relativitistic particle collisions | relativitistic particle collisions | relativity and electricity | relativity and electricity | Coulomb's law | Coulomb's law | magnetic fields | magnetic fields | Newtonian cosmology | Newtonian cosmology | general relativity | general relativity | Schwarzchild metric | Schwarzchild metric | gravitational | gravitational | red shift | red shift | light trajectories | light trajectories | geodesics | geodesics | Shapiro delay | Shapiro delay

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.962 General Relativity (MIT) 8.962 General Relativity (MIT)

Description

This course covers the basic principles of Einstein's general theory of relativity. Also discussed are differential geometry, gravitomagnetism, gravitational radiation, experimental tests of general relativity, black holes, and cosmology. This course covers the basic principles of Einstein's general theory of relativity. Also discussed are differential geometry, gravitomagnetism, gravitational radiation, experimental tests of general relativity, black holes, and cosmology.

Subjects

Einstein's general theory of relativity | Einstein's general theory of relativity | Einstein | Einstein | relativity | relativity | differential geometry | differential geometry | general relativity | general relativity | black holes | black holes | cosmology | cosmology | Hamiltonian Dynamics | Hamiltonian Dynamics | Curvature | Curvature | Acceleration | Acceleration | Hilbert action | Hilbert action | Orthonormal bases | Orthonormal bases | White dwarfs | White dwarfs | neutron stars | neutron stars | Kruskal coordinates | Kruskal coordinates | Wormholes | Wormholes | Hawking radiation | Hawking radiation | Kerr solution | Kerr solution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Astrophysics (MIT) Astrophysics (MIT)

Description

Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced Includes audio/video content: AV selected lectures. Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced

Subjects

black hole | black hole | general relativity | general relativity | astrophysics | astrophysics | cosmology | cosmology | Energy and momentum in flat spacetime | Energy and momentum in flat spacetime | the metric | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | trajectories and orbits of particles and light | elementary models of the Cosmos | elementary models of the Cosmos | Global Positioning System | Global Positioning System | solar system tests of relativity | solar system tests of relativity | descending into a black hole | descending into a black hole | gravitational lensing | gravitational lensing | gravitational waves | gravitational waves | Gravity Probe B | Gravity Probe B | more advanced models of the Cosmos | more advanced models of the Cosmos | spacetime curvature | spacetime curvature | rotating centers of attraction | rotating centers of attraction | nonrotating centers of attraction | nonrotating centers of attraction | event horizon | event horizon | energy | energy | momentum | momentum | flat spacetime | flat spacetime | metric | metric | trajectories | trajectories | orbits | orbits | particles | particles | light | light | elementary | elementary | models | models | cosmos | cosmos | spacetime | spacetime | curvature | curvature | flat | flat | GPS | GPS | gravitational | gravitational | lensing | lensing | waves | waves | rotating | rotating | nonrotating | nonrotating | centers | centers | attraction | attraction | solar system | solar system | tests | tests | relativity | relativity | general | general | advanced | advanced

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT) STS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT)

Description

This course covers the role of physics and physicists during the 20th century, focusing on Einstein, Oppenheimer, and Feynman. Beyond just covering the scientific developments, institutional, cultural, and political contexts will also be examined. This course covers the role of physics and physicists during the 20th century, focusing on Einstein, Oppenheimer, and Feynman. Beyond just covering the scientific developments, institutional, cultural, and political contexts will also be examined.

Subjects

STS.042 | STS.042 | 8.225 | 8.225 | general relativity | general relativity | theory of relativity | theory of relativity | einstein | einstein | history of physics | history of physics | cold war | cold war | physics in the 20th century | physics in the 20th century | electrodynamics | electrodynamics | special relativity | special relativity | Heisenberg | Heisenberg | Bohr | Bohr | world war II | world war II | big science | big science | feynman | feynman

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-STS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.962 General Relativity (MIT) 8.962 General Relativity (MIT)

Description

8.962 is MIT's graduate course in general relativity, which covers the basic principles of Einstein's general theory of relativity, differential geometry, experimental tests of general relativity, black holes, and cosmology. 8.962 is MIT's graduate course in general relativity, which covers the basic principles of Einstein's general theory of relativity, differential geometry, experimental tests of general relativity, black holes, and cosmology.

Subjects

Spacetime | Spacetime | tensors | tensors | special relativity | special relativity | differential geometry | differential geometry | Einstein's equation | Einstein's equation | gravitation | gravitation | cosmological constant | cosmological constant | Hilbert action | Hilbert action | general relativity | general relativity | gravitational waves | gravitational waves | gravitational lensing | gravitational lensing | cosmology | cosmology | Schwarzschild solution | Schwarzschild solution | black holes | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT)

Description

This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology.

Subjects

relativity | special relativity | Einstein's postulates | simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | relativistic effects | Minkowski diagrams | relativistic invariants | four-vectors | relativitistic particle collisions | relativity and electricity | Coulomb's law | magnetic fields | Newtonian cosmology | general relativity | Schwarzchild metric | gravitational | red shift | light trajectories | geodesics | Shapiro delay

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.033 Relativity (MIT)

Description

This course, which concentrates on special relativity, is normally taken by physics majors in their sophomore year. Topics include Einstein's postulates, the Lorentz transformation, relativistic effects and paradoxes, and applications involving electromagnetism and particle physics. This course also provides a brief introduction to some concepts of general relativity, including the principle of equivalence, the Schwartzschild metric and black holes, and the FRW metric and cosmology.

Subjects

relativity | special relativity | Einstein's postulates | simultaneity | time dilation | length contraction | clock synchronization | Lorentz transformation | relativistic effects | Minkowski diagrams | relativistic invariants | four-vectors | relativitistic particle collisions | relativity and electricity | Coulomb's law | magnetic fields | Newtonian cosmology | general relativity | Schwarzchild metric | gravitational | red shift | light trajectories | geodesics | Shapiro delay

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.962 General Relativity (MIT)

Description

This course covers the basic principles of Einstein's general theory of relativity. Also discussed are differential geometry, gravitomagnetism, gravitational radiation, experimental tests of general relativity, black holes, and cosmology.

Subjects

Einstein's general theory of relativity | Einstein | relativity | differential geometry | general relativity | black holes | cosmology | Hamiltonian Dynamics | Curvature | Acceleration | Hilbert action | Orthonormal bases | White dwarfs | neutron stars | Kruskal coordinates | Wormholes | Hawking radiation | Kerr solution

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Astrophysics (MIT)

Description

Study of physical effects in the vicinity of a black hole as a basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature of spacetime near rotating and nonrotating centers of attraction; trajectories and orbits of particles and light; elementary models of the Cosmos. Weekly meetings include an evening seminar and recitation. The last third of the semester is reserved for collaborative research projects on topics such as the Global Positioning System, solar system tests of relativity, descending into a black hole, gravitational lensing, gravitational waves, Gravity Probe B, and more advanced models of the Cosmos.

Subjects

black hole | general relativity | astrophysics | cosmology | Energy and momentum in flat spacetime | the metric | curvature of spacetime near rotating and nonrotating centers of attraction | trajectories and orbits of particles and light | elementary models of the Cosmos | Global Positioning System | solar system tests of relativity | descending into a black hole | gravitational lensing | gravitational waves | Gravity Probe B | more advanced models of the Cosmos | spacetime curvature | rotating centers of attraction | nonrotating centers of attraction | event horizon | energy | momentum | flat spacetime | metric | trajectories | orbits | particles | light | elementary | models | cosmos | spacetime | curvature | flat | GPS | gravitational | lensing | waves | rotating | nonrotating | centers | attraction | solar system | tests | relativity | general | advanced

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT)

Description

This course covers the role of physics and physicists during the 20th century, focusing on Einstein, Oppenheimer, and Feynman. Beyond just covering the scientific developments, institutional, cultural, and political contexts will also be examined.

Subjects

STS.042 | 8.225 | general relativity | theory of relativity | einstein | history of physics | cold war | physics in the 20th century | electrodynamics | special relativity | Heisenberg | Bohr | world war II | big science | feynman

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT) STS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT)

Description

This class explores the changing roles of physics and physicists during the 20th century. Topics range from relativity theory and quantum mechanics to high-energy physics and cosmology. The course also examines the development of modern physics within shifting institutional, cultural, and political contexts, such as physics in Imperial Britain, Nazi Germany, U.S. efforts during World War II, and physicists' roles during the Cold War. This class explores the changing roles of physics and physicists during the 20th century. Topics range from relativity theory and quantum mechanics to high-energy physics and cosmology. The course also examines the development of modern physics within shifting institutional, cultural, and political contexts, such as physics in Imperial Britain, Nazi Germany, U.S. efforts during World War II, and physicists' roles during the Cold War.

Subjects

relativity theory | relativity theory | quantum mechanics | quantum mechanics | solid-state physics | solid-state physics | elementary particles | elementary particles | quarks | quarks | cosmology | cosmology | nuclear weapons | nuclear weapons | Maxwell | Maxwell | Mach | Mach | Poincar? | Poincar? | Bohr | Bohr | Heisenberg | Heisenberg | Schr?dinger | Schr?dinger | McCarthyism | McCarthyism | Einstein | Einstein | Planck | Planck | Feynman | Feynman | scientific frontiers | scientific frontiers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.07 Dynamics (MIT) 16.07 Dynamics (MIT)

Description

Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics. Dynamics starts with fundamentals of Newtonian mechanics. Further topics include kinematics, particle dynamics, motion relative to accelerated reference frames, work and energy, impulse and momentum, systems of particles and rigid body dynamics. Applications to aerospace engineering are discussed, including introductory topics in orbital mechanics, flight dynamics, inertial navigation and attitude dynamics.

Subjects

Curvilinear motion | Curvilinear motion | carteian coordinates | carteian coordinates | dynamics | dynamics | equations of motion | equations of motion | intrinsic coordinates | intrinsic coordinates | coordinate systems | coordinate systems | work | work | energy | energy | conservative forces | conservative forces | potential energy | potential energy | linear impulse | linear impulse | mommentum | mommentum | angular impulse | angular impulse | relative motion | relative motion | rotating axes | rotating axes | translating axes | translating axes | Newton's second law | Newton's second law | inertial forces | inertial forces | accelerometers | accelerometers | Newtonian relativity | Newtonian relativity | gravitational attraction | gravitational attraction | 2D rigid body kinematics | 2D rigid body kinematics | conservation laws for systems of particles | conservation laws for systems of particles | 2D rigid body dynamics | 2D rigid body dynamics | pendulums | pendulums | 3D rigid body kinematics | 3D rigid body kinematics | 3d rigid body dynamics | 3d rigid body dynamics | inertia tensor | inertia tensor | gyroscopic motion | gyroscopic motion | torque-free motion | torque-free motion | spin stabilization | spin stabilization | variable mass systems | variable mass systems | rocket equation | rocket equation | central foce motion | central foce motion | Keppler's laws | Keppler's laws | orbits | orbits | orbit transfer | orbit transfer | vibration | vibration | spring mass systems | spring mass systems | forced vibration | forced vibration | isolation | isolation | coupled oscillators | coupled oscillators | normal modes | normal modes | wave propagation | wave propagation | cartesian coordinates | cartesian coordinates | momentum | momentum | central force motion | central force motion

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.950 Differential Geometry (MIT) 18.950 Differential Geometry (MIT)

Description

This course is an introduction to differential geometry of curves and surfaces in three dimensional Euclidean space. First and second fundamental forms, Gaussian and mean curvature, parallel transport, geodesics, Gauss-Bonnet theorem, complete surfaces, minimal surfaces and Bernstein's theorem are among the main topics studied. This course is an introduction to differential geometry of curves and surfaces in three dimensional Euclidean space. First and second fundamental forms, Gaussian and mean curvature, parallel transport, geodesics, Gauss-Bonnet theorem, complete surfaces, minimal surfaces and Bernstein's theorem are among the main topics studied.

Subjects

Metrics | Metrics | Lie bracket | Lie bracket | connections | connections | geodesics | geodesics | tensors | tensors | intrinsic and extrinsic curvature | intrinsic and extrinsic curvature | defined manifolds using coordinate charts | defined manifolds using coordinate charts | Curves and surfaces in three dimensions | Curves and surfaces in three dimensions | Gauss-Bonnet theorem for surfaces | Gauss-Bonnet theorem for surfaces | general relativity | general relativity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.251 String Theory for Undergraduates (MIT) 8.251 String Theory for Undergraduates (MIT)

Description

This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics.Technical RequirementsSoftware to view the .tex files on this course site can be accessed via the Comprehensive TeX Archive Network (CTAN) and the TeX Users Group Web site. Postscript viewer software, such as Ghostscript/Ghostview, can be used to view the .ps files found on this course site. This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics.Technical RequirementsSoftware to view the .tex files on this course site can be accessed via the Comprehensive TeX Archive Network (CTAN) and the TeX Users Group Web site. Postscript viewer software, such as Ghostscript/Ghostview, can be used to view the .ps files found on this course site.

Subjects

string theory | string theory | quantum mechanics | quantum mechanics | relativistic string | relativistic string | special relativity | special relativity | electromagnetism | electromagnetism | statistical mechanics | statistical mechanics | D-branes | D-branes | string thermodynamics | string thermodynamics | Light-cone | Light-cone | Tachyons | Tachyons | Kalb-Ramond fields | Kalb-Ramond fields | Lorentz invariance | Lorentz invariance | Born-Infeld electrodynamics | Born-Infeld electrodynamics | Hagedorn temperature | Hagedorn temperature | Riemann surfaces | Riemann surfaces | fermionic string theories | fermionic string theories

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.20 Introduction to Special Relativity (MIT) 8.20 Introduction to Special Relativity (MIT)

Description

Introduces the basic ideas and equations of Einstein's Special Theory of Relativity. Topics include: Lorentz transformations, length contraction and time dilation, four vectors, Lorentz invariants, relativistic energy and momentum, relativistic kinematics, Doppler shift, space-time diagrams, relativity paradoxes, and some concepts of General Relativity. Introduces the basic ideas and equations of Einstein's Special Theory of Relativity. Topics include: Lorentz transformations, length contraction and time dilation, four vectors, Lorentz invariants, relativistic energy and momentum, relativistic kinematics, Doppler shift, space-time diagrams, relativity paradoxes, and some concepts of General Relativity.

Subjects

Einstein's Special Theory of Relativity | Einstein's Special Theory of Relativity | Lorentz transformations | Lorentz transformations | length contraction | length contraction | ime dilation | ime dilation | time dilation | time dilation | four vectors | four vectors | Lorentz invariants | Lorentz invariants | relativistic energy and momentum | relativistic energy and momentum | relativistic kinematics | relativistic kinematics | Doppler shift | Doppler shift | space-time diagrams | space-time diagrams | relativity paradoxes | relativity paradoxes | General Relativity | General Relativity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

24.111 Philosophy of Quantum Mechanics (MIT) 24.111 Philosophy of Quantum Mechanics (MIT)

Description

Quantum mechanics--even in the ordinary, non-relativistic, "particle" formulation that will be the primary focus of this course--has been a staggeringly successful physical theory, surely one of the crowning achievements of 20th century science. It's also rather bizarre--bizarre enough to lead very intelligent and otherwise sensible people to make such claims as that the universe is perpetually splitting into many copies of itself, that conscious minds have the power to make physical systems "jump" in unpredictable ways, that classical logic stands in need of fundamental revision, and much, much more. In this course, we intelligent and sensible people will attempt to take a sober look at these and other alleged implications of quantum mechanics, as well as certain stub Quantum mechanics--even in the ordinary, non-relativistic, "particle" formulation that will be the primary focus of this course--has been a staggeringly successful physical theory, surely one of the crowning achievements of 20th century science. It's also rather bizarre--bizarre enough to lead very intelligent and otherwise sensible people to make such claims as that the universe is perpetually splitting into many copies of itself, that conscious minds have the power to make physical systems "jump" in unpredictable ways, that classical logic stands in need of fundamental revision, and much, much more. In this course, we intelligent and sensible people will attempt to take a sober look at these and other alleged implications of quantum mechanics, as well as certain stub

Subjects

relativity | relativity | particle | particle | approximation technique | approximation technique | scientific inquiry | scientific inquiry | experiment | experiment | observation | observation | quantum theory | quantum theory | quantum mechanics | quantum mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.251 String Theory for Undergraduates (MIT) 8.251 String Theory for Undergraduates (MIT)

Description

Introduction to the main concepts of string theory to undergraduates. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity (8.033) and basic quantum mechanics (8.05). Subject develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism (8.02) and statistical mechanics (8.044). This includes the study of D-branes and string thermodynamics. Introduction to the main concepts of string theory to undergraduates. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity (8.033) and basic quantum mechanics (8.05). Subject develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism (8.02) and statistical mechanics (8.044). This includes the study of D-branes and string thermodynamics.

Subjects

string theory | string theory | quantum mechanics | quantum mechanics | relativistic string | relativistic string | special relativity | special relativity | electromagnetism | electromagnetism | statistical mechanics | statistical mechanics | D-branes | D-branes | string thermodynamics | string thermodynamics | Light-cone | Light-cone | Tachyons | Tachyons | Kalb-Ramond fields | Kalb-Ramond fields | Lorentz invariance | Lorentz invariance | Born-Infeld electrodynamics | Born-Infeld electrodynamics | Hagedorn temperature | Hagedorn temperature | Riemann surfaces | Riemann surfaces | fermionic string theories | fermionic string theories | nuclear reactions | nuclear reactions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT) STS.042J Einstein, Oppenheimer, Feynman: Physics in the 20th Century (MIT)

Description

This class will study some of the changing ideas within modern physics, ranging from relativity theory and quantum mechanics to solid-state physics, nuclear and elementary particles, and cosmology. These ideas will be situated within shifting institutional, cultural, and political contexts. The overall aim is to understand the changing roles of physics and of physicists over the course of the twentieth century. This class will study some of the changing ideas within modern physics, ranging from relativity theory and quantum mechanics to solid-state physics, nuclear and elementary particles, and cosmology. These ideas will be situated within shifting institutional, cultural, and political contexts. The overall aim is to understand the changing roles of physics and of physicists over the course of the twentieth century.

Subjects

relativity theory | relativity theory | quantum mechanics | quantum mechanics | solid-state physics | solid-state physics | elementary particles | elementary particles | quarks | quarks | cosmology | cosmology | nuclear weapons | nuclear weapons | Maxwell | Maxwell | Mach | Mach | Bohr | Bohr | Heisenberg | Heisenberg | McCarthyism | McCarthyism | Poincar? | Poincar? | Schr?dinger | Schr?dinger | nuclear particles | nuclear particles | physics | physics | 20th century | 20th century | twentieth century | twentieth century | physicists | physicists | institutional | political | cultural context | institutional | political | cultural context | STS.042 | STS.042 | 8.225 | 8.225

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.635 Advanced Electromagnetism (MIT) 6.635 Advanced Electromagnetism (MIT)

Description

In 6.635, topics covered include: special relativity, electrodynamics of moving media, waves in dispersive media, microstrip integrated circuits, quantum optics, remote sensing, radiative transfer theory, scattering by rough surfaces, effective permittivities, random media, Green's functions for planarly layered media, integral equations in electromagnetics, method of moments, time domain method of moments, EM waves in periodic structures: photonic crystals and negative refraction. In 6.635, topics covered include: special relativity, electrodynamics of moving media, waves in dispersive media, microstrip integrated circuits, quantum optics, remote sensing, radiative transfer theory, scattering by rough surfaces, effective permittivities, random media, Green's functions for planarly layered media, integral equations in electromagnetics, method of moments, time domain method of moments, EM waves in periodic structures: photonic crystals and negative refraction.

Subjects

electromagnetism | electromagnetism | special relativity | special relativity | electrodynamics | electrodynamics | waves | waves | dispersive media | dispersive media | microstrip integrated circuits | microstrip integrated circuits | quantum optics | quantum optics | remote sensing | remote sensing | radiative transfer theory | radiative transfer theory | scattering | scattering | effective permittivities | effective permittivities | random media | random media | Green's functions | Green's functions | planarly layered media | planarly layered media | integral equations | integral equations | method of moments | method of moments | time domain method of moments | time domain method of moments | EM waves | EM waves | periodic structures | periodic structures | photonic crystals | photonic crystals | negative refraction | negative refraction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.251 String Theory for Undergraduates (MIT) 8.251 String Theory for Undergraduates (MIT)

Description

This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics. This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics.

Subjects

string theory | string theory | quantum mechanics | quantum mechanics | relativistic string | relativistic string | special relativity | special relativity | electromagnetism | electromagnetism | statistical mechanics | statistical mechanics | D-branes | D-branes | string thermodynamics. Light-cone | string thermodynamics. Light-cone | Tachyons | Tachyons | Kalb-Ramond fields | Kalb-Ramond fields | Lorentz invariance | Lorentz invariance | Born-Infeld electrodynamics | Born-Infeld electrodynamics | Hagedorn temperature | Hagedorn temperature | Riemann surfaces | Riemann surfaces | fermionic string theories | fermionic string theories

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.952 Particle Physics of the Early Universe (MIT) 8.952 Particle Physics of the Early Universe (MIT)

Description

This course covers the basics of general relativity, standard big bang cosmology, thermodynamics of the early universe, cosmic background radiation, primordial nucleosynthesis, basics of the standard model of particle physics, electroweak and QCD phase transition, basics of group theory, grand unified theories, baryon asymmetry, monopoles, cosmic strings, domain walls, axions, inflationary universe, and structure formation. This course covers the basics of general relativity, standard big bang cosmology, thermodynamics of the early universe, cosmic background radiation, primordial nucleosynthesis, basics of the standard model of particle physics, electroweak and QCD phase transition, basics of group theory, grand unified theories, baryon asymmetry, monopoles, cosmic strings, domain walls, axions, inflationary universe, and structure formation.

Subjects

general relativity | general relativity | big bang | big bang | cosmology | cosmology | thermodynamics | thermodynamics | early universe | early universe | cosmic background radiation | cosmic background radiation | primordial nucleosynthesis | primordial nucleosynthesis | standard model | standard model | electroweak and QCD phase transition | electroweak and QCD phase transition | group theory | group theory | grand unified theories | grand unified theories | baryon asymmetry | baryon asymmetry | monopoles | monopoles | cosmic strings | cosmic strings | domain walls | domain walls | axions | axions | inflationary universe | inflationary universe | structure formation | structure formation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.20 Introduction to Special Relativity (MIT) 8.20 Introduction to Special Relativity (MIT)

Description

This course introduces the basic ideas and equations of Einstein's Special Theory of Relativity. If you have hoped to understand the physics of Lorentz contraction, time dilation, the "twin paradox", and E=mc2, you're in the right place.AcknowledgementsProf. Knuteson wishes to acknowledge that this course was originally designed and taught by Prof. Robert Jaffe. This course introduces the basic ideas and equations of Einstein's Special Theory of Relativity. If you have hoped to understand the physics of Lorentz contraction, time dilation, the "twin paradox", and E=mc2, you're in the right place.AcknowledgementsProf. Knuteson wishes to acknowledge that this course was originally designed and taught by Prof. Robert Jaffe.

Subjects

Einstein's Special Theory of Relativity | Einstein's Special Theory of Relativity | Lorentz transformations | Lorentz transformations | length contraction | length contraction | time dilation | time dilation | four vectors | four vectors | Lorentz invariants | Lorentz invariants | relativistic energy and momentum | relativistic energy and momentum | relativistic kinematics | relativistic kinematics | Doppler shift | Doppler shift | space-time diagrams | space-time diagrams | relativity paradoxes | relativity paradoxes | General Relativity | General Relativity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

24.111 Philosophy of Quantum Mechanics (MIT) 24.111 Philosophy of Quantum Mechanics (MIT)

Description

Quantum mechanics--even in the ordinary, non-relativistic, "particle" formulation that will be the primary focus of this course--has been a staggeringly successful physical theory, surely one of the crowning achievements of 20th century science. It's also rather bizarre--bizarre enough to lead very intelligent and otherwise sensible people to make such claims as that the universe is perpetually splitting into many copies of itself, that conscious minds have the power to make physical systems "jump" in unpredictable ways, that classical logic stands in need of fundamental revision, and much, much more. In this course, we intelligent and sensible people will attempt to take a sober look at these and other alleged implications of quantum mechanics, as well as certain stubborn problems th Quantum mechanics--even in the ordinary, non-relativistic, "particle" formulation that will be the primary focus of this course--has been a staggeringly successful physical theory, surely one of the crowning achievements of 20th century science. It's also rather bizarre--bizarre enough to lead very intelligent and otherwise sensible people to make such claims as that the universe is perpetually splitting into many copies of itself, that conscious minds have the power to make physical systems "jump" in unpredictable ways, that classical logic stands in need of fundamental revision, and much, much more. In this course, we intelligent and sensible people will attempt to take a sober look at these and other alleged implications of quantum mechanics, as well as certain stubborn problems th

Subjects

relativity | relativity | particle | particle | approximation technique | approximation technique | scientific inquiry | scientific inquiry | experiment | experiment | observation | observation | quantum theory | quantum theory | quantum mechanics | quantum mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-24.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

STS.003 The Rise of Modern Science (MIT) STS.003 The Rise of Modern Science (MIT)

Description

This subject introduces the history of science from antiquity to the present. Students consider the impact of philosophy, art, magic, social structure, and folk knowledge on the development of what has come to be called "science" in the Western tradition, including those fields today designated as physics, biology, chemistry, medicine, astronomy and the mind sciences. Topics include concepts of matter, nature, motion, body, heavens, and mind as these have been shaped over the course of history. Students read original works by Aristotle, Vesalius, Newton, Lavoisier, Darwin, Freud, and Einstein, among others. This subject introduces the history of science from antiquity to the present. Students consider the impact of philosophy, art, magic, social structure, and folk knowledge on the development of what has come to be called "science" in the Western tradition, including those fields today designated as physics, biology, chemistry, medicine, astronomy and the mind sciences. Topics include concepts of matter, nature, motion, body, heavens, and mind as these have been shaped over the course of history. Students read original works by Aristotle, Vesalius, Newton, Lavoisier, Darwin, Freud, and Einstein, among others.

Subjects

history of science | history of science | philosophy | philosophy | ancient history | ancient history | medieval history | medieval history | industrial revolution | industrial revolution | natural history | natural history | cosmology | cosmology | psychology | psychology | relativity | relativity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-STS.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Description

Ali McInnes describes his installation at the Ruskin Degree Show 2010. Wales; http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Subjects

relativity | exploration | experiencing objects | relativity | exploration | experiencing objects

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://mediapub.it.ox.ac.uk/feeds/129018/video.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata