Searching for rigid rotor : 6 results found | RSS Feed for this search

Description

The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy. The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy.Subjects

spectroscopy | spectroscopy | harmonic oscillators | harmonic oscillators | matrix | matrix | hamiltonian | hamiltonian | heisenberg | heisenberg | vibrating rotor | vibrating rotor | Born-Oppenheimer | Born-Oppenheimer | diatomics | diatomics | laser schemes | laser schemes | angular momentum | angular momentum | hund's cases | hund's cases | energy levels | energy levels | second-order effects | second-order effects | perturbations | perturbations | Wigner-Eckart | Wigner-Eckart | Rydberg-Klein-Rees | Rydberg-Klein-Rees | rigid rotor | rigid rotor | asymmetric rotor | asymmetric rotor | vibronic coupling | vibronic coupling | wavepackets | wavepacketsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.61 Physical Chemistry (MIT) 5.61 Physical Chemistry (MIT)

Description

This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems — the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, spectroscopy. Acknowledgements The material for 5.61 has evolved over a period of many years, and, accordingly, several faculty members have contributed to the development of the course contents. The original version of the lecture notes that are available on OCW wa This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems — the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, spectroscopy. Acknowledgements The material for 5.61 has evolved over a period of many years, and, accordingly, several faculty members have contributed to the development of the course contents. The original version of the lecture notes that are available on OCW waSubjects

physical chemistry | physical chemistry | quantum mechanics | quantum mechanics | quantum chemistry | quantum chemistry | particles and waves | particles and waves | wave mechanics | wave mechanics | atomic structure | atomic structure | valence orbital | valence orbital | molecular orbital theory | molecular orbital theory | molecular structure | molecular structure | photochemistry | photochemistry | tunneling | tunneling | spherical harmonics | spherical harmonics | rigid rotor | rigid rotor | perturbation theory | perturbation theory | oscillators | oscillators | hartree-fock | hartree-fock | LCAO | LCAOLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.61 Physical Chemistry (MIT) 5.61 Physical Chemistry (MIT)

Description

This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems—the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, and spectroscopy. Acknowledgements The material for 5.61 has evolved over a period of many years, and, accordingly, several faculty members have contributed to the development of the course contents. The original version of the lecture notes that are available on OCW This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems—the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, and spectroscopy. Acknowledgements The material for 5.61 has evolved over a period of many years, and, accordingly, several faculty members have contributed to the development of the course contents. The original version of the lecture notes that are available on OCWSubjects

quantum mechanics | quantum mechanics | quantum chemistry | quantum chemistry | particles and waves | particles and waves | wave mechanics | wave mechanics | atomic structure | atomic structure | valence orbital | valence orbital | molecular orbital theory | molecular orbital theory | molecular structure | molecular structure | photochemistry | photochemistry | tunneling | tunneling | spherical harmonics | spherical harmonics | rigid rotor | rigid rotor | perturbation theory | perturbation theory | oscillators | oscillators | spectroscopy | spectroscopy | NMR | NMR | hartree-fock | hartree-fock | LCAO | LCAOLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-5.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems—the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, and spectroscopy. Acknowledgements The material for 5.61 has evolved over a period of many years, and, accordingly, several faculty members have contributed to the development of the course contents. The original version of the lecture notes that are available on OCWSubjects

quantum mechanics | quantum chemistry | particles and waves | wave mechanics | atomic structure | valence orbital | molecular orbital theory | molecular structure | photochemistry | tunneling | spherical harmonics | rigid rotor | perturbation theory | oscillators | spectroscopy | NMR | hartree-fock | LCAOLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata5.80 Small-Molecule Spectroscopy and Dynamics (MIT)

Description

The goal of this course is to illustrate the spectroscopy of small molecules in the gas phase: quantum mechanical effective Hamiltonian models for rotational, vibrational, and electronic structure; transition selection rules and relative intensities; diagnostic patterns and experimental methods for the assignment of non-textbook spectra; breakdown of the Born-Oppenheimer approximation (spectroscopic perturbations); the stationary phase approximation; nondegenerate and quasidegenerate perturbation theory (van Vleck transformation); qualitative molecular orbital theory (Walsh diagrams); the notation of atomic and molecular spectroscopy.Subjects

spectroscopy | harmonic oscillators | matrix | hamiltonian | heisenberg | vibrating rotor | Born-Oppenheimer | diatomics | laser schemes | angular momentum | hund's cases | energy levels | second-order effects | perturbations | Wigner-Eckart | Rydberg-Klein-Rees | rigid rotor | asymmetric rotor | vibronic coupling | wavepacketsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course presents an introduction to quantum mechanics. It begins with an examination of the historical development of quantum theory, properties of particles and waves, wave mechanics and applications to simple systems — the particle in a box, the harmonic oscillator, the rigid rotor and the hydrogen atom. The lectures continue with a discussion of atomic structure and the Periodic Table. The final lectures cover applications to chemical bonding including valence bond and molecular orbital theory, molecular structure, spectroscopy. Acknowledgements The material for 5.61 has evolved over a period of many years, and, accordingly, several faculty members have contributed to the development of the course contents. The original version of the lecture notes that are available on OCW waSubjects

physical chemistry | quantum mechanics | quantum chemistry | particles and waves | wave mechanics | atomic structure | valence orbital | molecular orbital theory | molecular structure | photochemistry | tunneling | spherical harmonics | rigid rotor | perturbation theory | oscillators | hartree-fock | LCAOLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata