Searching for ring : 5608 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Readme file for Computer Science Concepts

Description

This readme file contains details of links to all the Computer Science Concepts module's material held on Jorum and information about the module as well.

Subjects

ukoer | strings lecture | induction and recursion lecture | induction lecture | recursion lecture | complexity lecture | languages lecture | computer sciences concepts test | computer science concepts test | computer science concepts assignment | computer science concepts practical | introduction | computer science concepts | computer science concept | computer science | strings and languages | strings and language | string and languages | string and language | string | language | languages | finite automata | automata | finite | push down automata | push down | prolog | data structures and algorithms | data structure and algorithms | data structures and algorithm | data structure and algorithm | data structures | data structure | algorithms | algorithm | revision exercises | revision | induction and recursion | induction | recursion | turing machines | turing machine | turing | machine | machines | complexity | grammar | grammar and languages | grammar and language | introduction lecture | computer science concepts lecture | computer science concept lecture | computer science lecture | strings and languages lecture | strings and language lecture | string and languages lecture | string and language lecture | string lecture | language lecture | finite automata lecture | automata lecture | finite lecture | push down automata lecture | push down lecture | prolog lecture | data structures and algorithms lecture | data structure and algorithms lecture | data structures and algorithm lecture | data structure and algorithm lecture | data structures lecture | data structure lecture | algorithms lecture | algorithm lecture | revision exercises lecture | revision lecture | turing machines lecture | turing machine lecture | turing lecture | machine lecture | machines lecture | computer science class test | computer science concept class test | computer science concepts class test | strings and languages class test | strings and language class test | string and languages class test | string and language class test | string class test | language class test | languages class test | introduction class test | grammar lecture | grammar and languages lecture | grammar and language lecture | computer science assignment | computer science concept assignment | strings and languages assignment | strings and language assignment | string and languages assignment | string and language assignment | string assignment | language assignment | languages assignment | finite automata class test | automata class test | finite class test | finite automata assignment | automata assignment | finite assignment | push down automata class test | push down class test | push down automata assignment | push down assignment | prolog class test | data structures and algorithms class test | data structure and algorithms class test | data structures and algorithm class test | data structure and algorithm class test | data structures class test | data structure class test | algorithms class test | algorithm class test | computer science practical | computer science concept practical | data structures and algorithms practical | data structure and algorithms practical | data structures and algorithm practical | data structure and algorithm practical | data structures practical | data structure practical | algorithms practical | algorithm practical | revision exercises class test | revision class test | induction and recursion class test | induction class test | recursion class test | induction and recursion assignment | induction assignment | recursion assignment | turing machines class test | turing machine class test | turing class test | machine class test | machines class test | turing machines assignment | turing machine assignment | turing assignment | machine assignment | machines assignment | complexity class test | grammar class test | grammar and languages class test | grammar and language class test | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Betty North on a horse - Sarasota Betty North on a horse - Sarasota

Description

Subjects

horses | horses | animals | animals | florida | florida | sarasota | sarasota | 1949 | 1949 | sarasotaflorida | sarasotaflorida | ringlingbrothersbarnumandbailey | ringlingbrothersbarnumandbailey | thegreatestshowonearth | thegreatestshowonearth | yaleuniversity | yaleuniversity | circuses | circuses | darienconnecticut | darienconnecticut | theringlingbrothers | theringlingbrothers | ringlingcircus | ringlingcircus | ringlingbrothersbarnumandbaileycircus | ringlingbrothersbarnumandbaileycircus | johnringlingnorth | johnringlingnorth | elizabethpalmer | elizabethpalmer | henryringlingnorth | henryringlingnorth | elizabethnorth | elizabethnorth | josephjanneysteinmetz | josephjanneysteinmetz | ringlingbrothersbarnumandbaileycombinedshows | ringlingbrothersbarnumandbaileycombinedshows | josephsteinmetz | josephsteinmetz | richardnbarnumjr | richardnbarnumjr | richardnichollsbarnumjr | richardnichollsbarnumjr | mrselizabethpalmerbarnum | mrselizabethpalmerbarnum | mrselizabethbarnum | mrselizabethbarnum | henrywhitestonenorth | henrywhitestonenorth | henrybuddyringlingnorth | henrybuddyringlingnorth | mrselizabethnorth | mrselizabethnorth | mrselizabethpalmernorth | mrselizabethpalmernorth | mrselizabethpalmerbarnumnorth | mrselizabethpalmerbarnumnorth | lowheywoodschool | lowheywoodschool | march81949 | march81949 | bettynorth | bettynorth

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=31846825@N04&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.903 Photon and Neutron Scattering Spectroscopy and Its Applications in Condensed Matter (MIT) 22.903 Photon and Neutron Scattering Spectroscopy and Its Applications in Condensed Matter (MIT)

Description

The purpose of this course is to discuss modern techniques of generation of x-ray photons and neutrons and then follow with selected applications of newly developed photon and neutron scattering spectroscopic techniques to investigations of properties of condensed matter which are of interest to nuclear engineers. The purpose of this course is to discuss modern techniques of generation of x-ray photons and neutrons and then follow with selected applications of newly developed photon and neutron scattering spectroscopic techniques to investigations of properties of condensed matter which are of interest to nuclear engineers.

Subjects

Nuclear engineering | Nuclear engineering | photon | photon | neutron | neutron | scattering | scattering | spectroscopy | spectroscopy | neutron sources | neutron sources | photon sources | photon sources | neutron scattering theory | neutron scattering theory | light and X-ray scattering theory | light and X-ray scattering theory | linear response theory | linear response theory | inelastic neutron scattering spectroscopy | inelastic neutron scattering spectroscopy | quasielastic neutron scattering spectroscopy | quasielastic neutron scattering spectroscopy | photon correlation spectroscopy | photon correlation spectroscopy | inelastic X-ray scattering spectroscopy | inelastic X-ray scattering spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.109 Laboratory Fundamentals in Biological Engineering (MIT) 20.109 Laboratory Fundamentals in Biological Engineering (MIT)

Description

This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Rigorous quantitative data collection, statistical analysis, and conceptual understanding of instrumentation design and application form the underpinnings of this course. The four discovery based modules include DNA Engineering, Protein Engineering, Systems Engineering, and Biomaterials Engineering. Additional information is available on the course Wiki (hosted on OpenWetWare.) Teaching Fellows Reshma Shetty Maria Foley Eileen Higham Yoon Sung Nam This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Rigorous quantitative data collection, statistical analysis, and conceptual understanding of instrumentation design and application form the underpinnings of this course. The four discovery based modules include DNA Engineering, Protein Engineering, Systems Engineering, and Biomaterials Engineering. Additional information is available on the course Wiki (hosted on OpenWetWare.) Teaching Fellows Reshma Shetty Maria Foley Eileen Higham Yoon Sung Nam

Subjects

biological engineering | biological engineering | biology | biology | bioengineering | bioengineering | DNA | DNA | PCR | PCR | RNA | RNA | polymerase chain reaction | polymerase chain reaction | systems engineering | systems engineering | DNA engineering | DNA engineering | protein engineering | protein engineering | bio-material engineering | bio-material engineering | restriction map | restriction map | lipofection | lipofection | screening library | screening library | bacterial photography | bacterial photography | device characterization | device characterization | biological parts | biological parts | openwetware | openwetware

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.109 Laboratory Fundamentals in Biological Engineering (MIT) 20.109 Laboratory Fundamentals in Biological Engineering (MIT)

Description

This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Experimental design, rigorous data analysis, and scientific communication form the underpinnings of this subject. Three discovery-based experimental modules focus on genome engineering, expression engineering, and biomaterial engineering.This OCW site is based on the source OpenWetWare class Wiki, found at 20.109(F07): Laboratory Fundamentals of Biological Engineering. This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Experimental design, rigorous data analysis, and scientific communication form the underpinnings of this subject. Three discovery-based experimental modules focus on genome engineering, expression engineering, and biomaterial engineering.This OCW site is based on the source OpenWetWare class Wiki, found at 20.109(F07): Laboratory Fundamentals of Biological Engineering.

Subjects

biological engineering | biological engineering | biology | biology | bioengineering | bioengineering | DNA | DNA | PCR | PCR | RNA | RNA | polymerase chain reaction | polymerase chain reaction | systems engineering | systems engineering | DNA engineering | DNA engineering | protein engineering | protein engineering | bio-material engineering | bio-material engineering | restriction map | restriction map | lipofection | lipofection | screening library | screening library | bacterial photography | bacterial photography | device characterization | device characterization | biological parts | biological parts | openwetware | openwetware

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Computer Science Concepts - Strings and Languages

Description

This lecture forms part of the "Strings and Languages" topic of the Computer Science Concepts module.

Subjects

ukoer | strings lecture | computer science | computer science concept | computer science concepts | strings and languages | strings and language | string and languages | string and language | string | language | languages | computer science lecture | computer science concept lecture | computer science concepts lecture | strings and languages lecture | strings and language lecture | string and languages lecture | string and language lecture | string lecture | language lecture | languages lecture | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.Technical RequirementsMicrosoft® Excel software is recommended for viewing the .xls files

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings | 16.01 | 16.01 | 16.02 | 16.02 | 16.03 | 16.03 | 16.04 | 16.04

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

IV (MIT) IV (MIT)

Description

Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines. Includes audio/video content: AV selected lectures, AV faculty introductions, AV special element video. The basic objective of Unified Engineering is to give a solid understanding of the fundamental disciplines of aerospace engineering, as well as their interrelationships and applications. These disciplines are Materials and Structures (M); Computers and Programming (C); Fluid Mechanics (F); Thermodynamics (T); Propulsion (P); and Signals and Systems (S). In choosing to teach these subjects in a unified manner, the instructors seek to explain the common intellectual threads in these disciplines, as well as their combined application to solve engineering Systems Problems (SP). Throughout the year, the instructors emphasize the connections among the disciplines.

Subjects

Unified | Unified | Unified Engineering | Unified Engineering | aerospace | aerospace | CDIO | CDIO | C-D-I-O | C-D-I-O | conceive | conceive | design | design | implement | implement | operate | operate | team | team | team-based | team-based | discipline | discipline | materials | materials | structures | structures | materials and structures | materials and structures | computers | computers | programming | programming | computers and programming | computers and programming | fluids | fluids | fluid mechanics | fluid mechanics | thermodynamics | thermodynamics | propulsion | propulsion | signals | signals | systems | systems | signals and systems | signals and systems | systems problems | systems problems | fundamentals | fundamentals | technical communication | technical communication | graphical communication | graphical communication | communication | communication | reading | reading | research | research | experimentation | experimentation | personal response system | personal response system | prs | prs | active learning | active learning | First law | First law | first law of thermodynamics | first law of thermodynamics | thermo-mechanical | thermo-mechanical | energy | energy | energy conversion | energy conversion | aerospace power systems | aerospace power systems | propulsion systems | propulsion systems | aerospace propulsion systems | aerospace propulsion systems | heat | heat | work | work | thermal efficiency | thermal efficiency | forms of energy | forms of energy | energy exchange | energy exchange | processes | processes | heat engines | heat engines | engines | engines | steady-flow energy equation | steady-flow energy equation | energy flow | energy flow | flows | flows | path-dependence | path-dependence | path-independence | path-independence | reversibility | reversibility | irreversibility | irreversibility | state | state | thermodynamic state | thermodynamic state | performance | performance | ideal cycle | ideal cycle | simple heat engine | simple heat engine | cycles | cycles | thermal pressures | thermal pressures | temperatures | temperatures | linear static networks | linear static networks | loop method | loop method | node method | node method | linear dynamic networks | linear dynamic networks | classical methods | classical methods | state methods | state methods | state concepts | state concepts | dynamic systems | dynamic systems | resistive circuits | resistive circuits | sources | sources | voltages | voltages | currents | currents | Thevinin | Thevinin | Norton | Norton | initial value problems | initial value problems | RLC networks | RLC networks | characteristic values | characteristic values | characteristic vectors | characteristic vectors | transfer function | transfer function | ada | ada | ada programming | ada programming | programming language | programming language | software systems | software systems | programming style | programming style | computer architecture | computer architecture | program language evolution | program language evolution | classification | classification | numerical computation | numerical computation | number representation systems | number representation systems | assembly | assembly | SimpleSIM | SimpleSIM | RISC | RISC | CISC | CISC | operating systems | operating systems | single user | single user | multitasking | multitasking | multiprocessing | multiprocessing | domain-specific classification | domain-specific classification | recursive | recursive | execution time | execution time | fluid dynamics | fluid dynamics | physical properties of a fluid | physical properties of a fluid | fluid flow | fluid flow | mach | mach | reynolds | reynolds | conservation | conservation | conservation principles | conservation principles | conservation of mass | conservation of mass | conservation of momentum | conservation of momentum | conservation of energy | conservation of energy | continuity | continuity | inviscid | inviscid | steady flow | steady flow | simple bodies | simple bodies | airfoils | airfoils | wings | wings | channels | channels | aerodynamics | aerodynamics | forces | forces | moments | moments | equilibrium | equilibrium | freebody diagram | freebody diagram | free-body | free-body | free body | free body | planar force systems | planar force systems | equipollent systems | equipollent systems | equipollence | equipollence | support reactions | support reactions | reactions | reactions | static determinance | static determinance | determinate systems | determinate systems | truss analysis | truss analysis | trusses | trusses | method of joints | method of joints | method of sections | method of sections | statically indeterminate | statically indeterminate | three great principles | three great principles | 3 great principles | 3 great principles | indicial notation | indicial notation | rotation of coordinates | rotation of coordinates | coordinate rotation | coordinate rotation | stress | stress | extensional stress | extensional stress | shear stress | shear stress | notation | notation | plane stress | plane stress | stress equilbrium | stress equilbrium | stress transformation | stress transformation | mohr | mohr | mohr's circle | mohr's circle | principal stress | principal stress | principal stresses | principal stresses | extreme shear stress | extreme shear stress | strain | strain | extensional strain | extensional strain | shear strain | shear strain | strain-displacement | strain-displacement | compatibility | compatibility | strain transformation | strain transformation | transformation of strain | transformation of strain | mohr's circle for strain | mohr's circle for strain | principal strain | principal strain | extreme shear strain | extreme shear strain | uniaxial stress-strain | uniaxial stress-strain | material properties | material properties | classes of materials | classes of materials | bulk material properties | bulk material properties | origin of elastic properties | origin of elastic properties | structures of materials | structures of materials | atomic bonding | atomic bonding | packing of atoms | packing of atoms | atomic packing | atomic packing | crystals | crystals | crystal structures | crystal structures | polymers | polymers | estimate of moduli | estimate of moduli | moduli | moduli | composites | composites | composite materials | composite materials | modulus limited design | modulus limited design | material selection | material selection | materials selection | materials selection | measurement of elastic properties | measurement of elastic properties | stress-strain | stress-strain | stress-strain relations | stress-strain relations | anisotropy | anisotropy | orthotropy | orthotropy | measurements | measurements | engineering notation | engineering notation | Hooke | Hooke | Hooke's law | Hooke's law | general hooke's law | general hooke's law | equations of elasticity | equations of elasticity | boundary conditions | boundary conditions | multi-disciplinary | multi-disciplinary | models | models | engineering systems | engineering systems | experiments | experiments | investigations | investigations | experimental error | experimental error | design evaluation | design evaluation | evaluation | evaluation | trade studies | trade studies | effects of engineering | effects of engineering | social context | social context | engineering drawings | engineering drawings

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.008 Design and Manufacturing II (MIT) 2.008 Design and Manufacturing II (MIT)

Description

This course introduces you to modern manufacturing with four areas of emphasis: manufacturing processes, equipment/control, systems, and design for manufacturing. The course exposes you to integration of engineering and management disciplines for determining manufacturing rate, cost, quality and flexibility. Topics include process physics, equipment design and automation/control, quality, design for manufacturing, industrial management, and systems design and operation. Labs are integral parts of the course, and expose you to various manufacturing disciplines and practices. This course introduces you to modern manufacturing with four areas of emphasis: manufacturing processes, equipment/control, systems, and design for manufacturing. The course exposes you to integration of engineering and management disciplines for determining manufacturing rate, cost, quality and flexibility. Topics include process physics, equipment design and automation/control, quality, design for manufacturing, industrial management, and systems design and operation. Labs are integral parts of the course, and expose you to various manufacturing disciplines and practices.

Subjects

modern manufacturing | modern manufacturing | manufacturing processes | manufacturing processes | equipment/control | equipment/control | systems | systems | design for manufacturing | design for manufacturing | integration of engineering and management disciplines | integration of engineering and management disciplines | manufacturing rate | manufacturing rate | cost | cost | quality | quality | flexibility | flexibility | process physics | process physics | equipment design | equipment design | automation/control | automation/control | industrial management | industrial management | systems design and operation | systems design and operation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Computer Science Concepts - Strings and Languages

Description

This class test forms part of the "Strings and languages" topic of the Computer Science Concepts module.

Subjects

ukoer | computer sciences concepts test | computer science | computer science concept | computer science concepts | strings and languages | strings and language | string and languages | string and language | string | language | languages | strings and languages class test | strings and language class test | string and languages class test | string and language class test | string class test | language class test | languages class test | computer science class test | computer science concept class test | computer science concepts class test | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Computer Science Concepts - Strings and Languages

Description

This class test forms part of the "Strings and languages" topic of the Computer Science Concepts module.

Subjects

ukoer | computer sciences concepts test | computer science | computer science concept | computer science concepts | strings and languages | strings and language | string and languages | string and language | string | language | languages | computer science class test | computer science concept class test | computer science concepts class test | strings and languages class test | strings and language class test | string and languages class test | string and language class test | string class test | language class test | languages class test | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Computer Science Concepts - Strings and Languages

Description

This assignment forms part of the "Strings and languages" topic of the Computer Science Concepts module.

Subjects

ukoer | computer science | computer science concept | computer science concepts | strings and languages | strings and language | string and languages | string and language | string | language | languages | computer science assignment | computer science concept assignment | computer science concepts assignment | strings and languages assignment | strings and language assignment | string and languages assignment | string and language assignment | string assignment | language assignment | languages assignment | Computer science | I100

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.963 Globalization of the Engineering and Construction Industry (MIT) 1.963 Globalization of the Engineering and Construction Industry (MIT)

Description

This course explores the challenges and risks faced by senior managers of construction, engineering and architecture companies in entering global markets in general, and sponsoring concessions in particular. The course includes a discussion of innovative approaches to nation building, partnering, finance, utilization of specialized delivery systems, privatization, outsourcing and concessions; opportunities created by advanced information technology; and appropriate strategies for entering attractive and rapidly expanding international fields and markets. This course explores the challenges and risks faced by senior managers of construction, engineering and architecture companies in entering global markets in general, and sponsoring concessions in particular. The course includes a discussion of innovative approaches to nation building, partnering, finance, utilization of specialized delivery systems, privatization, outsourcing and concessions; opportunities created by advanced information technology; and appropriate strategies for entering attractive and rapidly expanding international fields and markets.

Subjects

management | construction | engineering | architecture | global markets | concessions | partnering | finance | privatization | outsourcing | information technology | international | globalization | greatest construction projects | Mexican road privatization | management | construction | engineering | architecture | global markets | concessions | partnering | finance | privatization | outsourcing | information technology | international | globalization | greatest construction projects | Mexican road privatization | management | management | construction | construction | engineering | engineering | architecture | architecture | global markets | global markets | concessions | concessions | partnering | partnering | finance | finance | privatization | privatization | outsourcing | outsourcing | information technology | information technology | international | international | globalization | globalization | greatest construction projects | greatest construction projects | Mexican road privatization | Mexican road privatization

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.251 String Theory for Undergraduates (MIT) 8.251 String Theory for Undergraduates (MIT)

Description

This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics.Technical RequirementsSoftware to view the .tex files on this course site can be accessed via the Comprehensive TeX Archive Network (CTAN) and the TeX Users Group Web site. Postscript viewer software, such as Ghostscript/Ghostview, can be used to view the .ps files found on this course site. This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics.Technical RequirementsSoftware to view the .tex files on this course site can be accessed via the Comprehensive TeX Archive Network (CTAN) and the TeX Users Group Web site. Postscript viewer software, such as Ghostscript/Ghostview, can be used to view the .ps files found on this course site.

Subjects

string theory | string theory | quantum mechanics | quantum mechanics | relativistic string | relativistic string | special relativity | special relativity | electromagnetism | electromagnetism | statistical mechanics | statistical mechanics | D-branes | D-branes | string thermodynamics | string thermodynamics | Light-cone | Light-cone | Tachyons | Tachyons | Kalb-Ramond fields | Kalb-Ramond fields | Lorentz invariance | Lorentz invariance | Born-Infeld electrodynamics | Born-Infeld electrodynamics | Hagedorn temperature | Hagedorn temperature | Riemann surfaces | Riemann surfaces | fermionic string theories | fermionic string theories

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.010J Introduction to Bioengineering (MIT) BE.010J Introduction to Bioengineering (MIT)

Description

Bioengineering at MIT is represented by the diverse curricula offered by most Departments in the School of Engineering. This course samples the wide variety of bioengineering options for students who plan to major in one of the undergraduate Engineering degree programs. The beginning lectures describe the science basis for bioengineering with particular emphasis on molecular cell biology and systems biology. Bioengineering faculty will then describe the bioengineering options in a particular engineering course as well as the type of research conducted by faculty in the department.Technical RequirementsSpecial software is required to use some of the files in this course: .rm, .mp3. Bioengineering at MIT is represented by the diverse curricula offered by most Departments in the School of Engineering. This course samples the wide variety of bioengineering options for students who plan to major in one of the undergraduate Engineering degree programs. The beginning lectures describe the science basis for bioengineering with particular emphasis on molecular cell biology and systems biology. Bioengineering faculty will then describe the bioengineering options in a particular engineering course as well as the type of research conducted by faculty in the department.Technical RequirementsSpecial software is required to use some of the files in this course: .rm, .mp3.

Subjects

biological engineering | biological engineering | bioengineering | bioengineering | biomems | biomems | biomaterials | biomaterials | biomechanical engineering | biomechanical engineering | biology | biology | engineering | engineering | bioprocessing | bioprocessing | biological materials | biological materials | biological engineers | biological engineers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

BE.010J Introduction to Bioengineering (MIT) BE.010J Introduction to Bioengineering (MIT)

Description

Designed as a freshmen seminar course, faculty from various School of Engineering departments describe the bioengineering research and educational opportunities specific to and offered by their departments. Background lectures by the BE.010J staff introduce students to the fundamental scientific basis for bioengineering. Specially produced videos provide additional background information that is supplemented with readings from newspaper and magazine articles.Technical RequirementsRealOne™ Player is required to run the .rm files found in this course. Designed as a freshmen seminar course, faculty from various School of Engineering departments describe the bioengineering research and educational opportunities specific to and offered by their departments. Background lectures by the BE.010J staff introduce students to the fundamental scientific basis for bioengineering. Specially produced videos provide additional background information that is supplemented with readings from newspaper and magazine articles.Technical RequirementsRealOne™ Player is required to run the .rm files found in this course.

Subjects

biological engineering | biological engineering | bioengineering | bioengineering | biomems | biomems | biomaterials | biomaterials | biomechanical engineering | biomechanical engineering | biology | biology | engineering | engineering | bioprocessing | bioprocessing | biological materials | biological materials | biological engineers | biological engineers | BE.010 | BE.010 | 2.790 | 2.790 | 6.025 | 6.025 | 7.38 | 7.38 | 10.010 | 10.010

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.251 String Theory for Undergraduates (MIT) 8.251 String Theory for Undergraduates (MIT)

Description

Introduction to the main concepts of string theory to undergraduates. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity (8.033) and basic quantum mechanics (8.05). Subject develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism (8.02) and statistical mechanics (8.044). This includes the study of D-branes and string thermodynamics. Introduction to the main concepts of string theory to undergraduates. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity (8.033) and basic quantum mechanics (8.05). Subject develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism (8.02) and statistical mechanics (8.044). This includes the study of D-branes and string thermodynamics.

Subjects

string theory | string theory | quantum mechanics | quantum mechanics | relativistic string | relativistic string | special relativity | special relativity | electromagnetism | electromagnetism | statistical mechanics | statistical mechanics | D-branes | D-branes | string thermodynamics | string thermodynamics | Light-cone | Light-cone | Tachyons | Tachyons | Kalb-Ramond fields | Kalb-Ramond fields | Lorentz invariance | Lorentz invariance | Born-Infeld electrodynamics | Born-Infeld electrodynamics | Hagedorn temperature | Hagedorn temperature | Riemann surfaces | Riemann surfaces | fermionic string theories | fermionic string theories | nuclear reactions | nuclear reactions

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.109 Laboratory Fundamentals in Biological Engineering (MIT) 20.109 Laboratory Fundamentals in Biological Engineering (MIT)

Description

Includes audio/video content: AV special element video. This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Experimental design, data analysis, and scientific communication form the underpinnings of this subject. Three discovery-based experimental modules focus on RNA engineering, protein engineering, and cell-biomaterial engineering.This OCW site is based on the source OpenWetWare class Wiki, 20.109(S10): Laboratory Fundamentals of Biological Engineering. Includes audio/video content: AV special element video. This course introduces experimental biochemical and molecular techniques from a quantitative engineering perspective. Experimental design, data analysis, and scientific communication form the underpinnings of this subject. Three discovery-based experimental modules focus on RNA engineering, protein engineering, and cell-biomaterial engineering.This OCW site is based on the source OpenWetWare class Wiki, 20.109(S10): Laboratory Fundamentals of Biological Engineering.

Subjects

biology | biology | bioengineering | bioengineering | biotechnology | biotechnology | RNA engineering | RNA engineering | protein engineering | protein engineering | biomaterial engineering | biomaterial engineering | assay | assay | lab protocol | lab protocol

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.010J Introduction to Bioengineering (BE.010J) (MIT) 20.010J Introduction to Bioengineering (BE.010J) (MIT)

Description

Includes audio/video content: AV selected lectures, AV special element video. Bioengineering at MIT is represented by the diverse curricula offered by most Departments in the School of Engineering. This course samples the wide variety of bioengineering options for students who plan to major in one of the undergraduate Engineering degree programs. The beginning lectures describe the science basis for bioengineering with particular emphasis on molecular cell biology and systems biology. Bioengineering faculty will then describe the bioengineering options in a particular engineering course as well as the type of research conducted by faculty in the department. Includes audio/video content: AV selected lectures, AV special element video. Bioengineering at MIT is represented by the diverse curricula offered by most Departments in the School of Engineering. This course samples the wide variety of bioengineering options for students who plan to major in one of the undergraduate Engineering degree programs. The beginning lectures describe the science basis for bioengineering with particular emphasis on molecular cell biology and systems biology. Bioengineering faculty will then describe the bioengineering options in a particular engineering course as well as the type of research conducted by faculty in the department.

Subjects

biological engineering | biological engineering | bioengineering | bioengineering | biomems | biomems | biomaterials | biomaterials | biomechanical engineering | biomechanical engineering | biology | biology | engineering | engineering | bioprocessing | bioprocessing | biological materials | biological materials | biological engineers | biological engineers

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.782 Environmental Engineering Masters of Engineering Project (MIT) 1.782 Environmental Engineering Masters of Engineering Project (MIT)

Description

This class is one of the core requirements for the Environmental Masters of Engineering program. It is designed to teach about environmental engineering through the use of case studies, computer software tools, and seminars from industrial experts. Case studies provide the basis for group projects as well as individual theses. Past case studies have included the MMR Superfund site on Cape Cod; restoration of the Florida Everglades; dredging of Boston Harbor; local watershed trading programs; appropriate wastewater treatment technology for Brazil; point-of-use water treatment for Nepal, Brownfields Development in Providence, RI, and water resource planning for the island of Cyprus. This class spans the entire academic year: students must register for the Fall term, IAP, and the Spring term. This class is one of the core requirements for the Environmental Masters of Engineering program. It is designed to teach about environmental engineering through the use of case studies, computer software tools, and seminars from industrial experts. Case studies provide the basis for group projects as well as individual theses. Past case studies have included the MMR Superfund site on Cape Cod; restoration of the Florida Everglades; dredging of Boston Harbor; local watershed trading programs; appropriate wastewater treatment technology for Brazil; point-of-use water treatment for Nepal, Brownfields Development in Providence, RI, and water resource planning for the island of Cyprus. This class spans the entire academic year: students must register for the Fall term, IAP, and the Spring term.

Subjects

civil engineering; environmental engineering; professional practice; methodology; thesis; proposal; yonder; geotechnical data; water treatment; aquifer; groundwater; hydrology; Chattahoochee; Tennessee; US Virgin Islands; pollution; contaminants; drinking water | civil engineering; environmental engineering; professional practice; methodology; thesis; proposal; yonder; geotechnical data; water treatment; aquifer; groundwater; hydrology; Chattahoochee; Tennessee; US Virgin Islands; pollution; contaminants; drinking water | civil engineering | civil engineering | environmental engineering | environmental engineering | professional practice | professional practice | methodology | methodology | thesis | thesis | proposal | proposal | yonder | yonder | geotechnical data | geotechnical data | water treatment | water treatment | aquifer | aquifer | groundwater | groundwater | hydrology | hydrology | Chattahoochee | Chattahoochee | Tennessee | Tennessee | US Virgin Islands | US Virgin Islands | pollution | pollution | contaminants | contaminants | drinking water | drinking water

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.033 Mechanics of Material Systems: An Energy Approach (MIT) 1.033 Mechanics of Material Systems: An Energy Approach (MIT)

Description

1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students. 1.033 provides an introduction to continuum mechanics and material modeling of engineering materials based on first energy principles: deformation and strain; momentum balance, stress and stress states; elasticity and elasticity bounds; plasticity and yield design. The overarching theme is a unified mechanistic language using thermodynamics, which allows understanding, modeling and design of a large range of engineering materials. This course is offered both to undergraduate (1.033) and graduate (1.57) students.

Subjects

continuum mechanics | continuum mechanics | material modeling | material modeling | engineering materials | engineering materials | energy principles: deformation and strain | energy principles: deformation and strain | momentum balance | momentum balance | stress | stress | stress states | stress states | elasticity and elasticity bounds | elasticity and elasticity bounds | plasticity | plasticity | yield design | yield design | first energy principles | first energy principles | deformation | deformation | strain | strain | elasticity bounds | elasticity bounds | unified mechanistic language | unified mechanistic language | thermodynamics | thermodynamics | engineering structures | engineering structures | unified framework | unified framework | irreversible processes | irreversible processes | structural engineering | structural engineering | soil mechanics | soil mechanics | mechanical engineering | mechanical engineering | materials science | materials science | solids | solids | durability mechanics | durability mechanics

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.064 Polymer Engineering (MIT) 3.064 Polymer Engineering (MIT)

Description

This course offers and overview of engineering analysis and design techniques for synthetic polymers. Treatment of materials properties selection, mechanical characterization, and processing in design of load-bearing and environment-compatible structures are covered. This course offers and overview of engineering analysis and design techniques for synthetic polymers. Treatment of materials properties selection, mechanical characterization, and processing in design of load-bearing and environment-compatible structures are covered.

Subjects

engineering analysis | engineering analysis | design techniques | design techniques | synthetic polymers | synthetic polymers | materials properties selection | materials properties selection | mechanical characterization | mechanical characterization | design of load-bearing and environment-compatible structures | design of load-bearing and environment-compatible structures | load-bearing structures | load-bearing structures | environment-compatible structures | environment-compatible structures | processing methods | processing methods | materials specification | materials specification | design drawing | design drawing | polymeric load-bearing articles | polymeric load-bearing articles

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.251 String Theory for Undergraduates (MIT) 8.251 String Theory for Undergraduates (MIT)

Description

This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics. This course introduces string theory to undergraduate and is based upon Prof. Zwiebach's textbook entitled A First Course in String Theory. Since string theory is quantum mechanics of a relativistic string, the foundations of the subject can be explained to students exposed to both special relativity and basic quantum mechanics. This course develops the aspects of string theory and makes it accessible to students familiar with basic electromagnetism and statistical mechanics.

Subjects

string theory | string theory | quantum mechanics | quantum mechanics | relativistic string | relativistic string | special relativity | special relativity | electromagnetism | electromagnetism | statistical mechanics | statistical mechanics | D-branes | D-branes | string thermodynamics. Light-cone | string thermodynamics. Light-cone | Tachyons | Tachyons | Kalb-Ramond fields | Kalb-Ramond fields | Lorentz invariance | Lorentz invariance | Born-Infeld electrodynamics | Born-Infeld electrodynamics | Hagedorn temperature | Hagedorn temperature | Riemann surfaces | Riemann surfaces | fermionic string theories | fermionic string theories

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.760B Introduction to Operations Management (MIT) 15.760B Introduction to Operations Management (MIT)

Description

This half-term course introduces students to problems and analysis related to the design, planning, control, and improvement of manufacturing and service operations. Class sessions involve explaining concepts, working examples, and discussing cases. A wide range of topics are covered, including: process analysis, quality management, supply chain design, procurement, and product development. Toward the end of the course, students work in teams to manage a virtual factory in a web-based simulation exercise. This half-term course introduces students to problems and analysis related to the design, planning, control, and improvement of manufacturing and service operations. Class sessions involve explaining concepts, working examples, and discussing cases. A wide range of topics are covered, including: process analysis, quality management, supply chain design, procurement, and product development. Toward the end of the course, students work in teams to manage a virtual factory in a web-based simulation exercise.

Subjects

operations management | operations management | service operations | service operations | manufacturing design | manufacturing design | manufacturing planning | manufacturing planning | production control | production control | quality management | quality management | process design | process design | reengineering | reengineering | product development | product development | project management | project management | supply chain design | supply chain design | improving manufacturing processes | improving manufacturing processes | capacity | capacity | inventory | inventory | quality control | quality control | product design | product design | factory management | factory management

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

North Eastern Marine Engineering Works, Sunderland, 1950 North Eastern Marine Engineering Works, Sunderland, 1950

Description

Subjects

portofsunderland | portofsunderland | sunderland | sunderland | riverwear | riverwear | historic | historic | heritage | heritage | industry | industry | ships | ships | vessels | vessels | docks | docks | coalstaithes | coalstaithes | shipping | shipping | wearside | wearside | marineengineering | marineengineering | industrial | industrial | aerialphotograph | aerialphotograph | aerial | aerial | maritime | maritime | hudsondocks | hudsondocks | southdocks | southdocks | piers | piers | rokerpier | rokerpier | lighthouse | lighthouse | northsea | northsea | cranes | cranes | northeasternmarineengineeringcompany | northeasternmarineengineeringcompany | blackandwhitephotograph | blackandwhitephotograph | digitalimage | digitalimage | archives | archives | industrialheritage | industrialheritage | maritimeheritage | maritimeheritage | shipbuildingheritage | shipbuildingheritage | aerialview | aerialview | northeastofengland | northeastofengland | unitedkingdom | unitedkingdom | northeasternmarineengineeringcompanyworks | northeasternmarineengineeringcompanyworks | may1950 | may1950 | mouth | mouth | opening | opening | portauthority | portauthority | land | land | bank | bank | water | water | riverwearcommissioners | riverwearcommissioners | management | management | harbour | harbour | river | river | port | port | pier | pier | dock | dock | quay | quay | dredging | dredging | developments | developments | construction | construction | shiprepairing | shiprepairing | traditionalindustry | traditionalindustry | vessel | vessel | ship | ship | rail | rail | deck | deck | cabin | cabin | transportation | transportation | road | road | buildings | buildings | shadow | shadow | daylight | daylight

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata