Searching for roof : 820 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

6.876J Advanced Topics in Cryptography (MIT) 6.876J Advanced Topics in Cryptography (MIT)

Description

The topics covered in this course include interactive proofs, zero-knowledge proofs, zero-knowledge proofs of knowledge, non-interactive zero-knowledge proofs, secure protocols, two-party secure computation, multiparty secure computation, and chosen-ciphertext security. The topics covered in this course include interactive proofs, zero-knowledge proofs, zero-knowledge proofs of knowledge, non-interactive zero-knowledge proofs, secure protocols, two-party secure computation, multiparty secure computation, and chosen-ciphertext security.

Subjects

interactive proofs | interactive proofs | zero-knowledge proofs | zero-knowledge proofs | zero-knowledge proofs of knowledge | zero-knowledge proofs of knowledge | non-interactive zero-knowledge proofs | non-interactive zero-knowledge proofs | secure protocols | secure protocols | two-party secure computation | two-party secure computation | multiparty secure computation | multiparty secure computation | chosen-ciphertext security | chosen-ciphertext security | 6.876 | 6.876 | 18.426 | 18.426

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science). This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental Concepts of Mathematics: Definitions, Proofs, Sets, Functions, Relations Discrete Structures: Modular Arithmetic, Graphs, State Machines, Counting Discrete Probability Theory A version of this course from a previous term was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science).

Subjects

mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | counting principles | permutations and combinations | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete mathematics | discrete mathematics | computer science | computer science

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability. This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability.

Subjects

Elementary discrete mathematics for computer science and engineering | Elementary discrete mathematics for computer science and engineering | mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | 6.042 | 6.042 | 18.062 | 18.062

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.304 Undergraduate Seminar in Discrete Mathematics (MIT) 18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability. This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability.

Subjects

Elementary discrete mathematics for computer science and engineering | Elementary discrete mathematics for computer science and engineering | mathematical definitions | mathematical definitions | proofs and applicable methods | proofs and applicable methods | formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | well-ordering | well-ordering | sets | sets | relations | relations | elementary graph theory | elementary graph theory | integer congruences | integer congruences | asymptotic notation and growth of functions | asymptotic notation and growth of functions | permutations and combinations | permutations and combinations | counting principles | counting principles | discrete probability | discrete probability | recursive definition | recursive definition | structural induction | structural induction | state machines and invariants | state machines and invariants | recurrences | recurrences | generating functions | generating functions | 6.042 | 6.042 | 18.062 | 18.062

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

How and why we do mathematical proofs How and why we do mathematical proofs

Description

Dr Feinstein has published two case studies on his use of IT in the teaching of mathematics to undergraduates. In 2009, Dr Feinstein was awarded a University of Nottingham Lord Dearing teaching award for his popular and successful innovations in this area Dr Feinstein has published two case studies on his use of IT in the teaching of mathematics to undergraduates. In 2009, Dr Feinstein was awarded a University of Nottingham Lord Dearing teaching award for his popular and successful innovations in this area This is a module framework. It can be viewed online or downloaded as a zip file. As taught in Autumn Semester 2009/10 The aim of this short unit is to motivate students to understand why we might want to do proofs (why proofs are important and how they can help us) and to help students with some of the relatively routine aspects of doing proofs. In particular, the student will learn the following: * proofs can help you to really see why a result is true; * problems that are easy to state can be hard to solve (e.g. Fermat's Last Theorem); * sometimes statements which appear to be intuitively obvious may turn out to be false (e.g. Simpson's paradox); * the answer to a question will often depend crucially on the definitions you are working with; * how to start proofs; * ho This is a module framework. It can be viewed online or downloaded as a zip file. As taught in Autumn Semester 2009/10 The aim of this short unit is to motivate students to understand why we might want to do proofs (why proofs are important and how they can help us) and to help students with some of the relatively routine aspects of doing proofs. In particular, the student will learn the following: * proofs can help you to really see why a result is true; * problems that are easy to state can be hard to solve (e.g. Fermat's Last Theorem); * sometimes statements which appear to be intuitively obvious may turn out to be false (e.g. Simpson's paradox); * the answer to a question will often depend crucially on the definitions you are working with; * how to start proofs; * ho

Subjects

UNow | UNow | UKOER | UKOER | Proofs Definitions Prime Number | Proofs Definitions Prime Number | Perfect Square Simpson's Paradox | Perfect Square Simpson's Paradox | Sequence Series | Sequence Series | Odd Functions Even Functions | Odd Functions Even Functions | Simpson's Paradox Strictly Increasing | Simpson's Paradox Strictly Increasing | Direct Proofs Comparison Test | Direct Proofs Comparison Test | Odd Numbers Multiples Eight | Odd Numbers Multiples Eight | Pure Maths Pure Mathematics Pure math | Pure Maths Pure Mathematics Pure math | Convergence Divergence | Convergence Divergence

License

Except for third party materials (materials owned by someone other than The University of Nottingham) and where otherwise indicated, the copyright in the content provided in this resource is owned by The University of Nottingham and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike UK 2.0 Licence (BY-NC-SA) Except for third party materials (materials owned by someone other than The University of Nottingham) and where otherwise indicated, the copyright in the content provided in this resource is owned by The University of Nottingham and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike UK 2.0 Licence (BY-NC-SA)

Site sourced from

http://unow.nottingham.ac.uk/rss.ashx

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.304 Undergraduate Seminar in Discrete Mathematics (MIT) 18.304 Undergraduate Seminar in Discrete Mathematics (MIT)

Description

This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic. This course is a student-presented seminar in combinatorics, graph theory, and discrete mathematics in general. Instruction and practice in written and oral communication is emphasized, with participants reading and presenting papers from recent mathematics literature and writing a final paper in a related topic.

Subjects

discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math; discrete mathematics; discrete; math; mathematics; seminar; presentations; student presentations; oral; communication; stable marriage; dych; emergency; response vehicles; ambulance; game theory; congruences; color theorem; four color; cake cutting; algorithm; RSA; encryption; numberical integration; sorting; post correspondence problem; PCP; ramsey; van der waals; fibonacci; recursion; domino; tiling; towers; hanoi; pigeonhole; principle; matrix; hamming; code; hat game; juggling; zero-knowledge; proof; repeated games; lewis carroll; determinants; infinitude of primes; bridges; konigsberg; koenigsberg; time series analysis; GARCH; rational; recurrence; relations; digital; image; compression; quantum computing | discrete math | discrete math | discrete mathematics | discrete mathematics | discrete | discrete | math | math | mathematics | mathematics | seminar | seminar | presentations | presentations | student presentations | student presentations | oral | oral | communication | communication | stable marriage | stable marriage | dych | dych | emergency | emergency | response vehicles | response vehicles | ambulance | ambulance | game theory | game theory | congruences | congruences | color theorem | color theorem | four color | four color | cake cutting | cake cutting | algorithm | algorithm | RSA | RSA | encryption | encryption | numberical integration | numberical integration | sorting | sorting | post correspondence problem | post correspondence problem | PCP | PCP | ramsey | ramsey | van der waals | van der waals | fibonacci | fibonacci | recursion | recursion | domino | domino | tiling | tiling | towers | towers | hanoi | hanoi | pigeonhole | pigeonhole | principle | principle | matrix | matrix | hamming | hamming | code | code | hat game | hat game | juggling | juggling | zero-knowledge | zero-knowledge | proof | proof | repeated games | repeated games | lewis carroll | lewis carroll | determinants | determinants | infinitude of primes | infinitude of primes | bridges | bridges | konigsberg | konigsberg | koenigsberg | koenigsberg | time series analysis | time series analysis | GARCH | GARCH | rational | rational | recurrence | recurrence | relations | relations | digital | digital | image | image | compression | compression | quantum computing | quantum computing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Testing guns at the firing range, Silloth Testing guns at the firing range, Silloth

Description

Subjects

sky | sky | industry | industry | wheel | wheel | stone | stone | standing | standing | outdoors | outdoors | interesting | interesting | gun | gun | industrial | industrial | mechanical | mechanical | unitedkingdom | unitedkingdom | drum | drum | britain | britain | crane | crane | label | label | military | military | debris | debris | pipe | pipe | platform | platform | rail | rail | testing | testing | chain | chain | northumberland | northumberland | cap | cap | pile | pile | cumbria | cumbria | archives | archives | overalls | overalls | target | target | artillery | artillery | products | products | unusual | unusual | striking | striking | armstrong | armstrong | crease | crease | cog | cog | operating | operating | attentive | attentive | weapons | weapons | firing | firing | lever | lever | newcastleupontyne | newcastleupontyne | whitworth | whitworth | fascinating | fascinating | mounting | mounting | digitalimage | digitalimage | workman | workman | factories | factories | silloth | silloth | customers | customers | firingrange | firingrange | manufacture | manufacture | nineteenthcentury | nineteenthcentury | rivertyne | rivertyne | manufacturing | manufacturing | industrialheritage | industrialheritage | armaments | armaments | blackandwhitephotograph | blackandwhitephotograph | northeastofengland | northeastofengland | armstrongwhitworth | armstrongwhitworth | lordarmstrong | lordarmstrong | ridsdale | ridsdale | elswickworks | elswickworks | williamgeorgearmstrong | williamgeorgearmstrong | workshopoftheworld | workshopoftheworld | testingguns | testingguns | scotswoodworks | scotswoodworks | sillothonsolway | sillothonsolway | proofrange | proofrange | vickersarmstrongcollection | vickersarmstrongcollection | breechloadingguns | breechloadingguns | proofranges | proofranges | 27october1926 | 27october1926 | 4inchgimbalmountings | 4inchgimbalmountings | 8inchbreechloadinggun | 8inchbreechloadinggun

License

No known copyright restrictions

Site sourced from

http://api.flickr.com/services/feeds/photos_public.gne?id=29295370@N07&lang=en-us&format=rss_200

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.876J Advanced Topics in Cryptography (MIT)

Description

The topics covered in this course include interactive proofs, zero-knowledge proofs, zero-knowledge proofs of knowledge, non-interactive zero-knowledge proofs, secure protocols, two-party secure computation, multiparty secure computation, and chosen-ciphertext security.

Subjects

interactive proofs | zero-knowledge proofs | zero-knowledge proofs of knowledge | non-interactive zero-knowledge proofs | secure protocols | two-party secure computation | multiparty secure computation | chosen-ciphertext security | 6.876 | 18.426

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Barn. Mansard type nr Richmond BC

Description

Subjects

Location\North America | barn | economic | gabled gambrel roof | mansard roof | roofs and spans

License

 (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ Copyright belongs to Paul Oliver Vernacular Architecture Library Copyright belongs to Paul Oliver Vernacular Architecture Library

Site sourced from

https://radar.brookes.ac.uk/radar/oai?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.100C Analysis I (MIT) 18.100C Analysis I (MIT)

Description

This course is meant as a first introduction to rigorous mathematics; understanding and writing of proofs will be emphasized. We will cover basic notions in real analysis: point-set topology, metric spaces, sequences and series, continuity, differentiability, and integration. This course is meant as a first introduction to rigorous mathematics; understanding and writing of proofs will be emphasized. We will cover basic notions in real analysis: point-set topology, metric spaces, sequences and series, continuity, differentiability, and integration.

Subjects

analysis | analysis | sequences | sequences | series | series | continuity | continuity | differentiability | differentiability | Riemann | Riemann | uniformity | uniformity | limit operations | limit operations | proofs | proofs | point-set topology | point-set topology | n-space | n-space | communication | communication | writing | writing

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.100A Analysis I (MIT) 18.100A Analysis I (MIT)

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla

Subjects

mathematical analysis | mathematical analysis | convergence of sequences | convergence of sequences | convergence of series | convergence of series | continuity | continuity | differentiability | differentiability | Riemann integral | Riemann integral | sequences and series of functions | sequences and series of functions | uniformity | uniformity | interchange of limit operations | interchange of limit operations | utility of abstract concepts | utility of abstract concepts | construction of proofs | construction of proofs | point-set topology | point-set topology | n-space | n-space

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.100B Analysis I (MIT) 18.100B Analysis I (MIT)

Description

Analysis I covers fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, and interchange of limit operations. Analysis I covers fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, and interchange of limit operations.

Subjects

mathematical analysis | mathematical analysis | convergence of sequences | convergence of sequences | convergence of series | convergence of series | continuity | continuity | differentiability | differentiability | Riemann integral | Riemann integral | sequences and series of functions | sequences and series of functions | uniformity | uniformity | interchange of limit operations | interchange of limit operations | utility of abstract concepts | utility of abstract concepts | construction of proofs | construction of proofs | point-set topology | point-set topology | n-space | n-space

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (SMA 5512) (MIT) 6.042J Mathematics for Computer Science (SMA 5512) (MIT)

Description

This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental concepts of Mathematics: definitions, proofs, sets, functions, relations. Discrete structures: modular arithmetic, graphs, state machines, counting. Discrete probability theory. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science). Contributors Srinivas Devadas Lars Engebretsen David Karger Eric Lehman Thomson Leighton Charles Leiserson Nancy Lynch Santosh Vempala This is an introductory course in Discrete Mathematics oriented toward Computer Science and Engineering. The course divides roughly into thirds: Fundamental concepts of Mathematics: definitions, proofs, sets, functions, relations. Discrete structures: modular arithmetic, graphs, state machines, counting. Discrete probability theory. This course was also taught as part of the Singapore-MIT Alliance (SMA) programme as course number SMA 5512 (Mathematics for Computer Science). Contributors Srinivas Devadas Lars Engebretsen David Karger Eric Lehman Thomson Leighton Charles Leiserson Nancy Lynch Santosh Vempala

Subjects

discrete mathematics | discrete mathematics | computer science | computer science | definitions | definitions | proofs | proofs | sets | sets | functions | functions | relations | relations | discrete structures | discrete structures | modular arithmetic | modular arithmetic | graphs | graphs | state machines | state machines | counting | counting | discrete probability theory | discrete probability theory | probability | probability | 6.042 | 6.042 | 18.062 | 18.062

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.045J Automata, Computability, and Complexity (MIT) 6.045J Automata, Computability, and Complexity (MIT)

Description

This course is offered to undergraduates and introduces basic mathematical models of computation and the finite representation of infinite objects. The course is slower paced than 6.840J/18.404J. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems. This course is offered to undergraduates and introduces basic mathematical models of computation and the finite representation of infinite objects. The course is slower paced than 6.840J/18.404J. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems.

Subjects

automata | automata | computability | computability | complexity | complexity | mathematical models | mathematical models | computation | computation | finite representation | finite representation | infinite objects | infinite objects | finite automata | finite automata | regular languages | regular languages | context-free languages | context-free languages | Turing machines | Turing machines | partial recursive functions | partial recursive functions | Church's Thesis | Church's Thesis | undecidability | undecidability | reducibility | reducibility | completeness | completeness | time complexity | time complexity | NP-completeness | NP-completeness | probabilistic computation | probabilistic computation | interactive proof systems | interactive proof systems | 6.045 | 6.045 | 18.400 | 18.400

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.404J Theory of Computation (MIT) 18.404J Theory of Computation (MIT)

Description

A more extensive and theoretical treatment of the material in 18.400J, Automata, Computability, and Complexity, emphasizing computability and computational complexity theory. Regular and context-free languages. Decidable and undecidable problems, reducibility, recursive function theory. Time and space measures on computation, completeness, hierarchy theorems, inherently complex problems, oracles, probabilistic computation, and interactive proof systems. A more extensive and theoretical treatment of the material in 18.400J, Automata, Computability, and Complexity, emphasizing computability and computational complexity theory. Regular and context-free languages. Decidable and undecidable problems, reducibility, recursive function theory. Time and space measures on computation, completeness, hierarchy theorems, inherently complex problems, oracles, probabilistic computation, and interactive proof systems.

Subjects

computability | computability | computational complexity theory | computational complexity theory | Regular and context-free languages | Regular and context-free languages | Decidable and undecidable problems | Decidable and undecidable problems | reducibility | reducibility | recursive function theory | recursive function theory | Time and space measures on computation | Time and space measures on computation | completeness | completeness | hierarchy theorems | hierarchy theorems | inherently complex problems | inherently complex problems | oracles | oracles | probabilistic computation | probabilistic computation | interactive proof systems | interactive proof systems | 18.404 | 18.404 | 6.840 | 6.840

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.100B Analysis I (MIT) 18.100B Analysis I (MIT)

Description

Analysis I covers fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations. MIT students may choose to take one of the two versions of 18.100. Option A chooses less abstract definitions and proofs, and gives applications where possible. Option B is more demanding and for students with more mathematical maturity; it places more emphasis on point-set topology and n-space, whereas Option A is concerned primarily with the real line. Analysis I covers fundamentals of mathematical analysis: convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations. MIT students may choose to take one of the two versions of 18.100. Option A chooses less abstract definitions and proofs, and gives applications where possible. Option B is more demanding and for students with more mathematical maturity; it places more emphasis on point-set topology and n-space, whereas Option A is concerned primarily with the real line.

Subjects

mathematical analysis | mathematical analysis | convergence of sequences | convergence of sequences | convergence of series | convergence of series | continuity | continuity | differentiability | differentiability | Reimann integral | Reimann integral | sequences and series of functions | sequences and series of functions | uniformity | uniformity | interchange of limit operations | interchange of limit operations | utility of abstract concepts | utility of abstract concepts | construction of proofs | construction of proofs | point-set topology | point-set topology | n-space | n-space | sequences of functions | sequences of functions | series of functions | series of functions | applications | applications | real variable | real variable | metric space | metric space | sets | sets | theorems | theorems | differentiate | differentiate | differentiable | differentiable | converge | converge | uniform | uniform | 18.100 | 18.100

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.045J Automata, Computability, and Complexity (MIT) 6.045J Automata, Computability, and Complexity (MIT)

Description

This course introduces basic mathematical models of computation and the finite representation of infinite objects. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems. This course introduces basic mathematical models of computation and the finite representation of infinite objects. Topics covered include: finite automata and regular languages, context-free languages, Turing machines, partial recursive functions, Church's Thesis, undecidability, reducibility and completeness, time complexity and NP-completeness, probabilistic computation, and interactive proof systems.

Subjects

automata | automata | computability | computability | complexity | complexity | mathematical models | mathematical models | computation | computation | finite representation | finite representation | infinite objects | infinite objects | finite automata | finite automata | regular languages | regular languages | context-free languages | context-free languages | Turing machines | Turing machines | partial recursive functions | partial recursive functions | Church's Thesis | Church's Thesis | undecidability | undecidability | reducibility | reducibility | completeness | completeness | time complexity | time complexity | NP-completeness | NP-completeness | probabilistic computation | probabilistic computation | interactive proof systems | interactive proof systems | 6.045 | 6.045 | 18.400 | 18.400

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

Includes audio/video content: AV lectures. This course covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions. Includes audio/video content: AV lectures. This course covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.

Subjects

formal logic notation | formal logic notation | proof methods | proof methods | induction | induction | sets | sets | relations | relations | graph theory | graph theory | integer congruences | integer congruences | asymptotic notation | asymptotic notation | growth of functions | growth of functions | permutations | permutations | combinations | combinations | counting | counting | discrete probability | discrete probability

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.845 Quantum Complexity Theory (MIT) 6.845 Quantum Complexity Theory (MIT)

Description

This course is an introduction to quantum computational complexity theory, the study of the fundamental capabilities and limitations of quantum computers. Topics include complexity classes, lower bounds, communication complexity, proofs, advice, and interactive proof systems in the quantum world. The objective is to bring students to the research frontier. This course is an introduction to quantum computational complexity theory, the study of the fundamental capabilities and limitations of quantum computers. Topics include complexity classes, lower bounds, communication complexity, proofs, advice, and interactive proof systems in the quantum world. The objective is to bring students to the research frontier.

Subjects

quantum computational complexity theory | quantum computational complexity theory | quantum computers | quantum computers | complexity classes | complexity classes | lower bounds | lower bounds | communication complexity | communication complexity | interactive proof systems | interactive proof systems | BQP | BQP | quantum algorithms | quantum algorithms | QMA | QMA | quantum Merlin Arthur | quantum Merlin Arthur

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.042J Mathematics for Computer Science (MIT) 6.042J Mathematics for Computer Science (MIT)

Description

This subject offers an introduction to Discrete Mathematics oriented toward Computer Science and Engineering. The subject coverage divides roughly into thirds: Fundamental concepts of mathematics: definitions, proofs, sets, functions, relations. Discrete structures: graphs, state machines, modular arithmetic, counting. Discrete probability theory. On completion of 6.042, students will be able to explain and apply the basic methods of discrete (noncontinuous) mathematics in Computer Science. They will be able to use these methods in subsequent courses in the design and analysis of algorithms, computability theory, software engineering, and computer systems. This subject offers an introduction to Discrete Mathematics oriented toward Computer Science and Engineering. The subject coverage divides roughly into thirds: Fundamental concepts of mathematics: definitions, proofs, sets, functions, relations. Discrete structures: graphs, state machines, modular arithmetic, counting. Discrete probability theory. On completion of 6.042, students will be able to explain and apply the basic methods of discrete (noncontinuous) mathematics in Computer Science. They will be able to use these methods in subsequent courses in the design and analysis of algorithms, computability theory, software engineering, and computer systems.

Subjects

discrete mathematics | discrete mathematics | definitions | definitions | proofs | proofs | sets | sets | functions | functions | relations | relations | discrete structures | discrete structures | graphs | graphs | state machines | state machines | modular arithmetic | modular arithmetic | counting | counting | discrete probability theory | discrete probability theory

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.100A Introduction to Analysis (MIT) 18.100A Introduction to Analysis (MIT)

Description

Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla Analysis I (18.100) in its various versions covers fundamentals of mathematical analysis: continuity, differentiability, some form of the Riemann integral, sequences and series of numbers and functions, uniform convergence with applications to interchange of limit operations, some point-set topology, including some work in Euclidean n-space. MIT students may choose to take one of three versions of 18.100: Option A (18.100A) chooses less abstract definitions and proofs, and gives applications where possible. Option B (18.100B) is more demanding and for students with more mathematical maturity; it places more emphasis from the beginning on point-set topology and n-space, whereas Option A is concerned primarily with analysis on the real line, saving for the last weeks work in 2-space (the pla

Subjects

mathematical analysis | mathematical analysis | estimations | estimations | limit of a sequence | limit of a sequence | limit theorems | limit theorems | subsequences | subsequences | cluster points | cluster points | infinite series | infinite series | power series | power series | local and global properties | local and global properties | continuity | continuity | intermediate-value theorem | intermediate-value theorem | convexity | convexity | integrability | integrability | Riemann integral | Riemann integral | calculus | calculus | convergence | convergence | Gamma function | Gamma function | Stirling | Stirling | quantifiers and negation | quantifiers and negation | Leibniz | Leibniz | Fubini | Fubini | improper integrals | improper integrals | Lebesgue integral | Lebesgue integral | mathematical proofs | mathematical proofs | differentiation | differentiation | integration | integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.100B Analysis I (MIT) 18.100B Analysis I (MIT)

Description

Analysis I covers fundamentals of mathematical analysis: metric spaces, convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations. Analysis I covers fundamentals of mathematical analysis: metric spaces, convergence of sequences and series, continuity, differentiability, Riemann integral, sequences and series of functions, uniformity, interchange of limit operations.

Subjects

mathematical analysis | mathematical analysis | convergence of sequences | convergence of sequences | convergence of series | convergence of series | continuity | continuity | differentiability | differentiability | Riemann integral | Riemann integral | sequences and series of functions | sequences and series of functions | uniformity | uniformity | interchange of limit operations | interchange of limit operations | utility of abstract concepts | utility of abstract concepts | construction of proofs | construction of proofs | point-set topology | point-set topology | n-space | n-space

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.098 Street-Fighting Mathematics (MIT) 18.098 Street-Fighting Mathematics (MIT)

Description

This course teaches the art of guessing results and solving problems without doing a proof or an exact calculation. Techniques include extreme-cases reasoning, dimensional analysis, successive approximation, discretization, generalization, and pictorial analysis. Applications include mental calculation, solid geometry, musical intervals, logarithms, integration, infinite series, solitaire, and differential equations. (No epsilons or deltas are harmed by taking this course.) This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month. This course teaches the art of guessing results and solving problems without doing a proof or an exact calculation. Techniques include extreme-cases reasoning, dimensional analysis, successive approximation, discretization, generalization, and pictorial analysis. Applications include mental calculation, solid geometry, musical intervals, logarithms, integration, infinite series, solitaire, and differential equations. (No epsilons or deltas are harmed by taking this course.) This course is offered during the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the end of the month.

Subjects

extreme-cases reasoning | extreme-cases reasoning | dimensional analysis | dimensional analysis | discretization | discretization | drag | drag | fluid mechanics | fluid mechanics | pendulum | pendulum | pictorial proofs | pictorial proofs | analogy | analogy | operators | operators | summation | summation | square roots | square roots | logarithms | logarithms | musical intervals | musical intervals | taking out the big part | taking out the big part | integration | integration | differentiation | differentiation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.404J Theory of Computation (MIT) 18.404J Theory of Computation (MIT)

Description

This graduate level course is more extensive and theoretical treatment of the material in Computability, and Complexity (6.045J / 18.400J). Topics include Automata and Language Theory, Computability Theory, and Complexity Theory. This graduate level course is more extensive and theoretical treatment of the material in Computability, and Complexity (6.045J / 18.400J). Topics include Automata and Language Theory, Computability Theory, and Complexity Theory.

Subjects

Computability | computational complexity theory | Computability | computational complexity theory | Regular and context-free languages | Regular and context-free languages | Decidable and undecidable problems | reducibility | recursive function theory | Decidable and undecidable problems | reducibility | recursive function theory | Time and space measures on computation | completeness | hierarchy theorems | inherently complex problems | oracles | probabilistic computation | and interactive proof systems | Time and space measures on computation | completeness | hierarchy theorems | inherently complex problems | oracles | probabilistic computation | and interactive proof systems

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata