Searching for signal detection theory : 8 results found | RSS Feed for this search

9.63 Laboratory in Cognitive Science (MIT) 9.63 Laboratory in Cognitive Science (MIT)

Description

9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports. 9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.Subjects

cognitive science | cognitive science | human perception | human perception | cognition | cognition | statistical analysis | statistical analysis | signal detection theory | signal detection theory | single factor design | single factor design | factorial design | factorial design | matlab | matlab | correlational studies | correlational studies | ethics in research | ethics in researchLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Mathematical introduction to neural coding and dynamics. Convolution, correlation, linear systems, Fourier analysis, signal detection theory, probability theory, and information theory. Applications to neural coding, focusing on the visual system. Hodgkin-Huxley and related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission. Mathematical introduction to neural coding and dynamics. Convolution, correlation, linear systems, Fourier analysis, signal detection theory, probability theory, and information theory. Applications to neural coding, focusing on the visual system. Hodgkin-Huxley and related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission.Subjects

neural coding | neural coding | dynamics | dynamics | convolution | convolution | correlation | correlation | linear systems | linear systems | Fourier analysis | Fourier analysis | signal detection theory | signal detection theory | probability theory | probability theory | information theory | information theory | neural excitability | neural excitability | stochastic models | stochastic models | ion channels | ion channels | cable theory | cable theory | 9.29 | 9.29 | 8.261 | 8.261License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.63 Laboratory in Visual Cognition (MIT) 9.63 Laboratory in Visual Cognition (MIT)

Description

9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports. 9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.Subjects

cognitive science | cognitive science | human perception | human perception | cognition | cognition | statistical analysis | statistical analysis | signal detection theory | signal detection theory | single factor design | single factor design | factorial design | factorial design | matlab | matlab | correlational studies | correlational studies | ethics in research | ethics in research | visual cognition | visual cognition | thought | thought | psychology and cognitive science | psychology and cognitive science | information processing | information processing | organization of visual cognitive abilities. | organization of visual cognitive abilities.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course gives a mathematical introduction to neural coding and dynamics. Topics include convolution, correlation, linear systems, game theory, signal detection theory, probability theory, information theory, and reinforcement learning. Applications to neural coding, focusing on the visual system are covered, as well as Hodgkin-Huxley and other related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission. Visit the Seung Lab Web site. This course gives a mathematical introduction to neural coding and dynamics. Topics include convolution, correlation, linear systems, game theory, signal detection theory, probability theory, information theory, and reinforcement learning. Applications to neural coding, focusing on the visual system are covered, as well as Hodgkin-Huxley and other related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission. Visit the Seung Lab Web site.Subjects

neural coding | neural coding | dynamics | dynamics | convolution | convolution | correlation | correlation | linear systems | linear systems | Fourier analysis | Fourier analysis | signal detection theory | signal detection theory | probability theory | probability theory | information theory | information theory | neural excitability | neural excitability | stochastic models | stochastic models | ion channels | ion channels | cable theory | cable theoryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.63 Laboratory in Cognitive Science (MIT)

Description

9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.Subjects

cognitive science | human perception | cognition | statistical analysis | signal detection theory | single factor design | factorial design | matlab | correlational studies | ethics in researchLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.29J Introduction to Computational Neuroscience (MIT)

Description

Mathematical introduction to neural coding and dynamics. Convolution, correlation, linear systems, Fourier analysis, signal detection theory, probability theory, and information theory. Applications to neural coding, focusing on the visual system. Hodgkin-Huxley and related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission.Subjects

neural coding | dynamics | convolution | correlation | linear systems | Fourier analysis | signal detection theory | probability theory | information theory | neural excitability | stochastic models | ion channels | cable theory | 9.29 | 8.261License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.63 Laboratory in Visual Cognition (MIT)

Description

9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.Subjects

cognitive science | human perception | cognition | statistical analysis | signal detection theory | single factor design | factorial design | matlab | correlational studies | ethics in research | visual cognition | thought | psychology and cognitive science | information processing | organization of visual cognitive abilities.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.29J Introduction to Computational Neuroscience (MIT)

Description

This course gives a mathematical introduction to neural coding and dynamics. Topics include convolution, correlation, linear systems, game theory, signal detection theory, probability theory, information theory, and reinforcement learning. Applications to neural coding, focusing on the visual system are covered, as well as Hodgkin-Huxley and other related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission. Visit the Seung Lab Web site.Subjects

neural coding | dynamics | convolution | correlation | linear systems | Fourier analysis | signal detection theory | probability theory | information theory | neural excitability | stochastic models | ion channels | cable theoryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata