Searching for solar energy : 23 results found | RSS Feed for this search

1

EC.S07 Photovoltaic Solar Energy Systems (MIT) EC.S07 Photovoltaic Solar Energy Systems (MIT)

Description

This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included. This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.

Subjects

solar radiation | solar radiation | solar flux | solar flux | photovoltaics | photovoltaics | solar gain | solar gain | solar energy | solar energy | solar energy collection systems | solar energy collection systems | design | design | cost-benefit analysis | cost-benefit analysis | green energy | green energy | hardware | hardware | stand-alone collectors | stand-alone collectors | flat-plate collectors | flat-plate collectors | PV stations | PV stations | utilities | utilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.721 D-Lab: Development, Dialogue and Delivery (MIT) SP.721 D-Lab: Development, Dialogue and Delivery (MIT)

Description

D-Lab is a year-long series of courses and field trips. The fall class provides a basic background in international development and appropriate technology through guest speakers, case studies and hands-on exercises. Students will also have the opportunity to participate in an IAP field trip to Haiti, India, Brazil, Honduras, Zambia, Samoa, or Lesotho and continue their work in a spring term design class. As part of the fall class, students will partner with community organizations in these countries and develop plans for the IAP site visit. In addition, students will learn about the culture, language, economics, politics and history of their host country. D-Lab is a year-long series of courses and field trips. The fall class provides a basic background in international development and appropriate technology through guest speakers, case studies and hands-on exercises. Students will also have the opportunity to participate in an IAP field trip to Haiti, India, Brazil, Honduras, Zambia, Samoa, or Lesotho and continue their work in a spring term design class. As part of the fall class, students will partner with community organizations in these countries and develop plans for the IAP site visit. In addition, students will learn about the culture, language, economics, politics and history of their host country.

Subjects

development project | development project | appropriate technology | appropriate technology | sustainable development | sustainable development | intermediate technology | intermediate technology | stakeholder analysis | stakeholder analysis | Haiti | Haiti | India | India | Brazil | Brazil | Honduras | Honduras | Zambia | Zambia | Samoa | Samoa | Lesotho | Lesotho | developing country | developing country | international development | international development | third world | third world | cooking | cooking | latrine | latrine | grain mill | grain mill | solar energy | solar energy | energy | energy | charcoal | charcoal | wheelchair | wheelchair | poverty | poverty | water | water | water quality | water quality | safe water | safe water | water treatment | water treatment | health | health | sanitation | sanitation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT) 8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like:How much energy can we really get from wind?How does a solar photovoltaic work?What is an OTEC (Ocean Thermal Energy Converter) and how does it work?What is the physics behind global warming?What makes engines efficient?How does a nuclear reactor work, and what are the realistic hazards?The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.Special note about this course: The Physics of Energy is a new subject at MIT, offered for the first time in the Fall of 2008. The materials for the course, as such, are not yet ready fo This course is designed to give you the scientific understanding you need to answer questions like:How much energy can we really get from wind?How does a solar photovoltaic work?What is an OTEC (Ocean Thermal Energy Converter) and how does it work?What is the physics behind global warming?What makes engines efficient?How does a nuclear reactor work, and what are the realistic hazards?The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.Special note about this course: The Physics of Energy is a new subject at MIT, offered for the first time in the Fall of 2008. The materials for the course, as such, are not yet ready fo

Subjects

energy | energy | solar energy | solar energy | wind energy | wind energy | nuclear energy | nuclear energy | biological energy sources | biological energy sources | thermal energy | thermal energy | eothermal power | eothermal power | ocean thermal energy conversion | ocean thermal energy conversion | hydro power | hydro power | climate change | climate change | energy storage | energy storage | energy conservation | energy conservation | nuclear radiation | nuclear radiation | solar photovoltaic | solar photovoltaic | OTEC | OTEC | nuclear reactor | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.58J Radiative Transfer (MIT) 2.58J Radiative Transfer (MIT)

Description

This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing. This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.

Subjects

thermal radiation | thermal radiation | heat transfer | heat transfer | photon transfer | photon transfer | quantum modeling | quantum modeling | materials | materials | electromagnetic | electromagnetic | absorption | absorption | emitting media | emitting media | scattering | scattering | laser | laser | imaging | imaging | infrared | infrared | global warming | global warming | semiconductor manufacturing | semiconductor manufacturing | combustion | combustion | furnace | furnace | high temperature processing | high temperature processing | Drude | Drude | Lorenz | Lorenz | gas | gas | dielectric | dielectric | Monte Carlo | Monte Carlo | simulation | simulation | solar energy | solar energy | solar power | solar power | solar cell | solar cell | 2.58 | 2.58 | 10.74 | 10.74

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Photosynthesis: Life from Light (MIT) 7.343 Photosynthesis: Life from Light (MIT)

Description

In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co

Subjects

photosynthesis | photosynthesis | life from light | life from light | conversion | conversion | solar energy | solar energy | chemical energy | chemical energy | biogeochemical cycles | biogeochemical cycles | global warming | global warming | physical | physical | chemical and biological reactions | chemical and biological reactions | light harvesting | light harvesting | photochemistry | photochemistry | protein complexes | protein complexes | synthesis of ATP | synthesis of ATP | reduction of CO2 | reduction of CO2 | carbohydrates | carbohydrates | light-driven proton pumps | light-driven proton pumps | anoxygenic photosynthesis | anoxygenic photosynthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT) 8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy. This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.

Subjects

energy | energy | solar energy | solar energy | wind energy | wind energy | nuclear energy | nuclear energy | biological energy sources | biological energy sources | thermal energy | thermal energy | eothermal power | eothermal power | ocean thermal energy conversion | ocean thermal energy conversion | hydro power | hydro power | climate change | climate change | energy storage | energy storage | energy conservation | energy conservation | nuclear radiation | nuclear radiation | solar photovoltaic | solar photovoltaic | OTEC | OTEC | nuclear reactor | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-energy.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.769 Photovoltaic Solar Energy Systems (MIT)

Description

This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.

Subjects

solar radiation | solar flux | photovoltaics | solar gain | solar energy | solar energy collection systems | design | cost-benefit analysis | green energy | hardware | stand-alone collectors | flat-plate collectors | PV stations | utilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.S07 Photovoltaic Solar Energy Systems (MIT)

Description

This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.

Subjects

solar radiation | solar flux | photovoltaics | solar gain | solar energy | solar energy collection systems | design | cost-benefit analysis | green energy | hardware | stand-alone collectors | flat-plate collectors | PV stations | utilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT) 10.391J Sustainable Energy (MIT)

Description

This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the

Subjects

Assessment of energy systems | Assessment of energy systems | resources | resources | extraction | extraction | conversion | conversion | and end-use | and end-use | regional and global energy needs | regional and global energy needs | 21st century | 21st century | sustainable manner | sustainable manner | renewable and conventional energy technologies | renewable and conventional energy technologies | biomass energy | biomass energy | fossil fuels | fossil fuels | geothermal energy | geothermal energy | nuclear power | nuclear power | wind power | wind power | solar energy | solar energy | hydrogen fuel | hydrogen fuel | fusion energy | fusion energy | analysis of energy technology systems | analysis of energy technology systems | political | political | social | social | economic | economic | environment | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.701J D-Lab I: Development (MIT) EC.701J D-Lab I: Development (MIT)

Description

D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to

Subjects

EC.701 | EC.701 | 11.025 | 11.025 | 11.472 | 11.472 | development project | development project | appropriate technology | appropriate technology | sustainable development | sustainable development | intermediate technology | intermediate technology | stakeholder analysis | stakeholder analysis | China | China | India | India | Rwanda | Rwanda | Sierra Leone | Sierra Leone | Tanzania | Tanzania | Africa | Africa | developing country | developing country | international development | international development | third world | third world | poverty | poverty | bottom of the pyramid;cooking | bottom of the pyramid;cooking | latrine | latrine | grain mill | grain mill | solar energy | solar energy | stove | stove | energy | energy | charcoal | charcoal | wheelchair | wheelchair | water | water | water quality | water quality | safe water | safe water | water treatment | water treatment | health | health | sanitation | sanitation | World Bank | World Bank | NGO | NGO | United Nations | United Nations | ICT4D | ICT4D | ICT4C | ICT4C | microfinance | microfinance | micro-finance | micro-finance | AIDS | AIDS | HIV | HIV | wind power | wind power | solar power | solar power | biomass | biomass | biodiesel | biodiesel | biogas | biogas | agriculture | agriculture | farming | farming | food | food | green revolution | green revolution | millenium development goals | millenium development goals

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.S07 Photovoltaic Solar Energy Systems (MIT)

Description

This class will study the behavior of photovoltaic solar energy systems, focusing on the behavior of "stand-alone" systems. The design of stand-alone photovoltaic systems will be covered. This will include estimation of costs and benefits, taking into account any available government subsidies. Introduction to the hardware elements and their behavior will be included.

Subjects

solar radiation | solar flux | photovoltaics | solar gain | solar energy | solar energy collection systems | design | cost-benefit analysis | green energy | hardware | stand-alone collectors | flat-plate collectors | PV stations | utilities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.721 D-Lab I: Development (MIT)

Description

D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to

Subjects

development project | appropriate technology | sustainable development | intermediate technology | stakeholder analysis | China | India | Rwanda | Sierra Leone | Tanzania | Africa | developing country | international development | third world | poverty | bottom of the pyramid;cooking | latrine | grain mill | solar energy | stove | energy | charcoal | wheelchair | water | water quality | safe water | water treatment | health | sanitation | World Bank | NGO | United Nations | ICT4D | ICT4C | microfinance | micro-finance | AIDS | HIV | wind power | solar power | biomass | biodiesel | biogas | agriculture | farming | food | green revolution | millenium development goals

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Photosynthesis: Life from Light (MIT)

Description

In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co

Subjects

photosynthesis | life from light | conversion | solar energy | chemical energy | biogeochemical cycles | global warming | physical | chemical and biological reactions | light harvesting | photochemistry | protein complexes | synthesis of ATP | reduction of CO2 | carbohydrates | light-driven proton pumps | anoxygenic photosynthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Energy resources: solar energy

Description

Level: Intermediate

Subjects

biomass conversion | photovoltaic conversion | solar energy | solar heating | ukoer | geesoer | geography | environmental science | Physical sciences | F000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Energy resources: An introduction to energy resources

Description

Energy resources are essential for any society, be it one dependent on subsistence farming or an industrialised country. There are many different sources of energy, some well-known such as coal or petroleum, others less so, such as tides or the heat inside the Earth. Is nuclear power a salvation or a nightmare? This unit provides background information to each resource, so that you can assess them for yourself.

Subjects

anoxic biomass carbohydrates energy density energy efficiency energy force fossil fuels fuels geesoer hydropower kinetic energy methane nuclear energy photosynthesis potential energy power primary energy renewable energy supplies residence time respiration solar energy ukoer work | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

10.391J Sustainable Energy (MIT)

Description

This course assesses current and potential future energy systems, covers resources, extraction, conversion, and end-use, and emphasizes meeting regional and global energy needs in the 21st century in a sustainable manner. Different renewable and conventional energy technologies will be presented including biomass energy, fossil fuels, geothermal energy, nuclear power, wind power, solar energy, hydrogen fuel, and fusion energy and their attributes described within a framework that aids in evaluation and analysis of energy technology systems in the context of political, social, economic, and environmental goals. This course is offered during the last two weeks of the Independent Activities Period (IAP), which is a special 4-week term at MIT that runs from the first week of January until the

Subjects

Assessment of energy systems | resources | extraction | conversion | and end-use | regional and global energy needs | 21st century | sustainable manner | renewable and conventional energy technologies | biomass energy | fossil fuels | geothermal energy | nuclear power | wind power | solar energy | hydrogen fuel | fusion energy | analysis of energy technology systems | political | social | economic | environment

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

SP.721 D-Lab: Development, Dialogue and Delivery (MIT)

Description

D-Lab is a year-long series of courses and field trips. The fall class provides a basic background in international development and appropriate technology through guest speakers, case studies and hands-on exercises. Students will also have the opportunity to participate in an IAP field trip to Haiti, India, Brazil, Honduras, Zambia, Samoa, or Lesotho and continue their work in a spring term design class. As part of the fall class, students will partner with community organizations in these countries and develop plans for the IAP site visit. In addition, students will learn about the culture, language, economics, politics and history of their host country.

Subjects

development project | appropriate technology | sustainable development | intermediate technology | stakeholder analysis | Haiti | India | Brazil | Honduras | Zambia | Samoa | Lesotho | developing country | international development | third world | cooking | latrine | grain mill | solar energy | energy | charcoal | wheelchair | poverty | water | water quality | safe water | water treatment | health | sanitation

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like:How much energy can we really get from wind?How does a solar photovoltaic work?What is an OTEC (Ocean Thermal Energy Converter) and how does it work?What is the physics behind global warming?What makes engines efficient?How does a nuclear reactor work, and what are the realistic hazards?The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.Special note about this course: The Physics of Energy is a new subject at MIT, offered for the first time in the Fall of 2008. The materials for the course, as such, are not yet ready fo

Subjects

energy | solar energy | wind energy | nuclear energy | biological energy sources | thermal energy | eothermal power | ocean thermal energy conversion | hydro power | climate change | energy storage | energy conservation | nuclear radiation | solar photovoltaic | OTEC | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.58J Radiative Transfer (MIT)

Description

This course investigates the principles of thermal radiation and their applications to engineering heat and photon transfer problems. Topics include quantum and classical models of radiative properties of materials, electromagnetic wave theory for thermal radiation, radiative transfer in absorbing, emitting, and scattering media, and coherent laser radiation. Applications cover laser-material interactions, imaging, infrared instrumentation, global warming, semiconductor manufacturing, combustion, furnaces, and high temperature processing.

Subjects

thermal radiation | heat transfer | photon transfer | quantum modeling | materials | electromagnetic | absorption | emitting media | scattering | laser | imaging | infrared | global warming | semiconductor manufacturing | combustion | furnace | high temperature processing | Drude | Lorenz | gas | dielectric | Monte Carlo | simulation | solar energy | solar power | solar cell | 2.58 | 10.74

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.343 Photosynthesis: Life from Light (MIT)

Description

In this course, you will journey through the web of physical, chemical, and biological reactions that collectively constitute photosynthesis. We will begin with light harvesting and follow photons to the sites of primary photochemistry: the photoreaction centers. A molecular-scale view will show in atomic detail how these protein complexes capture and energize electrons. Then we will follow the multiple pathways electrons take as they carry out their work. Consequent reactions, such as the synthesis of ATP and the reduction of CO2 during the synthesis of carbohydrates, will also be discussed in structural detail. Lastly, we will delve into the evolution of these systems and also discuss other photosynthetic strategies, such as light-driven proton pumps and anoxygenic photosynthesis. The co

Subjects

photosynthesis | life from light | conversion | solar energy | chemical energy | biogeochemical cycles | global warming | physical | chemical and biological reactions | light harvesting | photochemistry | protein complexes | synthesis of ATP | reduction of CO2 | carbohydrates | light-driven proton pumps | anoxygenic photosynthesis

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.21 The Physics of Energy (MIT)

Description

This course is designed to give you the scientific understanding you need to answer questions like: How much energy can we really get from wind? How does a solar photovoltaic work? What is an OTEC (Ocean Thermal Energy Converter) and how does it work? What is the physics behind global warming? What makes engines efficient? How does a nuclear reactor work, and what are the realistic hazards? The course is designed for MIT sophomores, juniors, and seniors who want to understand the fundamental laws and physical processes that govern the sources, extraction, transmission, storage, degradation, and end uses of energy.

Subjects

energy | solar energy | wind energy | nuclear energy | biological energy sources | thermal energy | eothermal power | ocean thermal energy conversion | hydro power | climate change | energy storage | energy conservation | nuclear radiation | solar photovoltaic | OTEC | nuclear reactor

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

EC.701J D-Lab I: Development (MIT)

Description

D-Lab Development addresses issues of technological improvements at the micro level for developing countries—in particular, how the quality of life of low-income households can be improved by adaptation of low cost and sustainable technologies. Discussion of development issues as well as project implementation challenges are addressed through lectures, case studies, guest speakers and laboratory exercises. Students form project teams to partner with mostly local level organizations in developing countries, and formulate plans for an IAP site visit. (Previous field sites include Ghana, Brazil, Honduras and India.) Project team meetings focus on developing specific projects and include cultural, social, political, environmental and economic overviews of the countries and localities to

Subjects

EC.701 | 11.025 | 11.472 | development project | appropriate technology | sustainable development | intermediate technology | stakeholder analysis | China | India | Rwanda | Sierra Leone | Tanzania | Africa | developing country | international development | third world | poverty | bottom of the pyramid;cooking | latrine | grain mill | solar energy | stove | energy | charcoal | wheelchair | water | water quality | safe water | water treatment | health | sanitation | World Bank | NGO | United Nations | ICT4D | ICT4C | microfinance | micro-finance | AIDS | HIV | wind power | solar power | biomass | biodiesel | biogas | agriculture | farming | food | green revolution | millenium development goals

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

15.395 Entrepreneurship Without Borders (MIT)

Description

This course examines opportunities and problems for entrepreneurs globally, including Europe, Latin America, and Asia. Linkages between the business environment, the institutional framework, and new venture creation are covered with a special focus on blockchain technology. In addition to discussing a range of global entrepreneurial situations, student groups pick one particular cluster on which to focus and to understand what further development would entail. Classroom interactions are based primarily on case studies. 

Subjects

entrepreneurship | new businesses | financial inclusion | government | corruption | incumbent firms | global finance | income pyramid | technologies | economic development | Bitcoin | blockchain technology | innovation | dispersion of power | Digital Currency Initiative | Cryptocurrency | DCI | MIT Media Lab | centralized trust | credit system | CBDC | protocol-based startup | Open Music Initiative | data ownership | blockchain registry | property rights | solar energy | smart meters | localized power | supply chain | quasi-private digital money | public blockchain | BitFury | Corda

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata