Searching for spectrometer : 12 results found | RSS Feed for this search
Description
This course is designed for graduate students with an interest in using primary research literature to discuss and learn about current research around non-conventional light stable isotope geochemistry. This course is designed for graduate students with an interest in using primary research literature to discuss and learn about current research around non-conventional light stable isotope geochemistry.Subjects
isotope gechemistry | isotope gechemistry | kinetic isotope effect | kinetic isotope effect | mass-spectrometery analysis | mass-spectrometery analysis | mass-spectrometer | mass-spectrometer | photochemistry | photochemistry | clumped isotope | clumped isotopeLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.661 Receivers, Antennas, and Signals (MIT) 6.661 Receivers, Antennas, and Signals (MIT)
Description
This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation. This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation.Subjects
receiver | receiver | antenna | antenna | signal | signal | radio | radio | optical | optical | detection | detection | communications | communications | astronomy | astronomy | remote sensing | instrumentation | remote sensing | instrumentation | radar | radar | statistics | statistics | signal processing | signal processing | radiometer | radiometer | spectrometer | spectrometer | interferometer | interferometer | digital correlation | digital correlation | matched filter | matched filter | ambiguity function | ambiguity function | channel performance | channel performance | electromagnetic | electromagnetic | angular filtering | angular filtering | aperture synthesis | aperture synthesis | radiative transfer | radiative transfer | parameter estimation | parameter estimation | remote sensing | remote sensing | instrumentation | instrumentation | radio signals | radio signals | optical signals | optical signals | statistical analysis | statistical analysisLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.S079 Nanomaker (MIT) 6.S079 Nanomaker (MIT)
Description
Includes audio/video content: AV special element video. This course links clean energy sources and storage technology to energy consumption case studies to give students a concept of the full circle of production and consumption. Specifically, photovoltaic, organic photovoltaic, piezoelectricity and thermoelectricity sources are applied to electrophoresis, lab on a chip, and paper microfluidic applications–relevant analytical techniques in biology and chemistry. Hands-on experimentation with everyday materials and equipment help connect the theory with the implementation. Complementary laboratories fabricating LEDs, organic LEDs and spectrometers introduce the diagnostic tools used to characterize energy efficiency.This course is one of many OCW Energy Courses, and it is an elective Includes audio/video content: AV special element video. This course links clean energy sources and storage technology to energy consumption case studies to give students a concept of the full circle of production and consumption. Specifically, photovoltaic, organic photovoltaic, piezoelectricity and thermoelectricity sources are applied to electrophoresis, lab on a chip, and paper microfluidic applications–relevant analytical techniques in biology and chemistry. Hands-on experimentation with everyday materials and equipment help connect the theory with the implementation. Complementary laboratories fabricating LEDs, organic LEDs and spectrometers introduce the diagnostic tools used to characterize energy efficiency.This course is one of many OCW Energy Courses, and it is an electiveSubjects
clean energy | clean energy | energy sources | energy sources | energy storage | energy storage | energy consumption | energy consumption | photovoltaic | photovoltaic | piezoelectric | piezoelectric | thermoelectric | thermoelectric | LED | LED | light emitting diode | light emitting diode | organic LED | organic LED | analytical biology | analytical biology | analytical chemistry | analytical chemistry | microfluidics | microfluidics | spectrometer | spectrometer | energy efficiency | energy efficiencyLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata12.491 Non-conventional Light Stable Isotope Geochemistry (MIT)
Description
This course is designed for graduate students with an interest in using primary research literature to discuss and learn about current research around non-conventional light stable isotope geochemistry.Subjects
isotope gechemistry | kinetic isotope effect | mass-spectrometery analysis | mass-spectrometer | photochemistry | clumped isotopeLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.02 Electricity and Magnetism (MIT)
Description
In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8Subjects
Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holesLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.02 Electricity and Magnetism (MIT)
Description
In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8Subjects
Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holesLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allkoreancourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata8.02 Electricity and Magnetism (MIT)
Description
In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8Subjects
Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holesLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
Subjects
cluster | sagittarius | hst | pistolstar | hubblespacetelescope | milkywaygalaxy | nicmos | quintupletcluster | nearinfraredcameraandmultiobjectspectrometerLicense
No known copyright restrictionsSite sourced from
http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200Attribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataGiant Twisters in the Lagoon Nebula
Description
Subjects
sagittarius | galaxy | hst | hubblespacetelescope | lagoonnebula | stis | wfpc | widefieldplanetarycamera2 | spacetelescopeimagingspectrograph | nicmos | oherschel36 | nearinfraredcameraandmultiobjectspectrometerLicense
No known copyright restrictionsSite sourced from
http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200Attribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata360 Degree Panorama Mars Pathfinder Landing Site
Description
Subjects
apxs | alphaprotonxrayspectrometer | discoveryprogram | imp | imagerformarspathfinder | jpl | jetpropulsionlaboratory | petersmith | sojourner | universityofarizona | marsLicense
No known copyright restrictionsSite sourced from
http://api.flickr.com/services/feeds/photos_public.gne?id=44494372@N05&lang=en-us&format=rss_200Attribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This course links clean energy sources and storage technology to energy consumption case studies to give students a concept of the full circle of production and consumption. Specifically, photovoltaic, organic photovoltaic, piezoelectricity and thermoelectricity sources are applied to electrophoresis, lab on a chip, and paper microfluidic applications–relevant analytical techniques in biology and chemistry. Hands-on experimentation with everyday materials and equipment help connect the theory with the implementation. Complementary laboratories fabricating LEDs, organic LEDs and spectrometers introduce the diagnostic tools used to characterize energy efficiency.This course is one of many OCW Energy Courses, and it is an elective subject in MIT’s undergraduate Energy Studies MinSubjects
clean energy | energy sources | energy storage | energy consumption | photovoltaic | piezoelectric | thermoelectric | LED | light emitting diode | organic LED | analytical biology | analytical chemistry | microfluidics | spectrometer | energy efficiencyLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.661 Receivers, Antennas, and Signals (MIT)
Description
This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation.Subjects
receiver | antenna | signal | radio | optical | detection | communications | astronomy | remote sensing | instrumentation | radar | statistics | signal processing | radiometer | spectrometer | interferometer | digital correlation | matched filter | ambiguity function | channel performance | electromagnetic | angular filtering | aperture synthesis | radiative transfer | parameter estimation | remote sensing | instrumentation | radio signals | optical signals | statistical analysisLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata