Searching for speed of sound : 5 results found | RSS Feed for this search

16.120 Compressible Flow (MIT) 16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear. The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.Subjects

compressible fluid dynamics | compressible fluid dynamics | fluid dynamics | fluid dynamics | external flows | external flows | internal flows | internal flows | quasi-on-dimensional | quasi-on-dimensional | quasi-1D | quasi-1D | channel flow | channel flow | multi-dimensional flows | multi-dimensional flows | nozzles | nozzles | diffusers | diffusers | inlets | inlets | loss generation | loss generation | interactions | interactions | aerodynamic shapes | aerodynamic shapes | subsonic | subsonic | supersonic | supersonic | transonic | transonic | hypersonic | hypersonic | shock waves | shock waves | vortices | vortices | disturbance behavior | disturbance behavior | unsteady | unsteady | speed of sound | speed of sound | isentropic flows | isentropic flows | non-isentropic flows | non-isentropic flows | potential flows | potential flows | rotational flows | rotational flows | shaft work | shaft work | heat addition | heat addition | mass addition | mass addition | flow states | flow states | flow regime | flow regime | velocity non-uniformities | velocity non-uniformities | density non-uniformities | density non-uniformities | fluid system components | fluid system components | lift | lift | drag | drag | continuum flow | continuum flow | shock strength | shock strength | characteristics | characteristics | governing equations | governing equations | thermodynamic context | thermodynamic context | characteristic parameters | characteristic parameters | quasi-one-dimensional flow | quasi-one-dimensional flow | disturbances | disturbances | unsteady flow | unsteady flow | gas dynamic discontinuities | gas dynamic discontinuities | detonations | detonations | linear two-dimensional flows | linear two-dimensional flows | non-linear two-dimensional flows | non-linear two-dimensional flowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.01 Physics I: Classical Mechanics (MIT)

Description

8.01 is a first-semester freshman physics class in Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory. In addition to the basic concepts of Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory, a variety of interesting topics are covered in this course: Binary Stars, Neutron Stars, Black Holes, Resonance Phenomena, Musical Instruments, Stellar Collapse, Supernovae, Astronomical observations from very high flying balloons (lecture 35), and you will be allowed a peek into the intriguing Quantum World. Also by Walter Lewin Courses: Electricity and Magnetism (8.02) - with a complete set of 36 video lectures from the Spring of 2002 Vibrations and Waves (8.03) - with a complete set of 23 video lectures from the Fall of 2004 Talks: For The Love Of Physics - ProfesSubjects

units of measurement | powers of ten | dimensional analysis | measurement uncertainty | scaling arguments | velocity | speed | acceleration | acceleration of gravity | vectors | motion | vector product | scalar product | projectiles | projectile trajectory | circular motion | centripetal motion | artifical gravity | force | Newton's Three Laws | eight | weightlessness | tension | friction | frictionless forces | static friction | dot products | cross products | kinematics | springs | pendulum | mechanical energy | kinetic energy | universal gravitation | resistive force | drag force | air drag | viscous terminal velocity | potential energy | heat; energy consumption | heat | energy consumption | collisions | center of mass | momentum | Newton's Cradle | impulse and impact | rocket thrust | rocket velocity | flywheels | inertia | torque | spinning rod | elliptical orbits | Kepler's Laws | Doppler shift | stellar dynamics | sound waves | electromagnets | binary star | black holes | rope tension | elasticity | speed of sound | pressure in fluid | Pascal's Principle | hydrostatic pressure | barometric pressure | submarines | buoyant force | Bernoulli's Equations | Archimede's Principle | floating | baloons | resonance | wind instruments | thermal expansion | shrink fitting | particles and waves | diffractionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.01 Physics I: Classical Mechanics (MIT)

Description

8.01 is a first-semester freshman physics class in Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory. In addition to the basic concepts of Newtonian Mechanics, Fluid Mechanics, and Kinetic Gas Theory, a variety of interesting topics are covered in this course: Binary Stars, Neutron Stars, Black Holes, Resonance Phenomena, Musical Instruments, Stellar Collapse, Supernovae, Astronomical observations from very high flying balloons (lecture 35), and you will be allowed a peek into the intriguing Quantum World. Also by Walter Lewin Courses: Electricity and Magnetism (8.02) - with a complete set of 36 video lectures from the Spring of 2002 Vibrations and Waves (8.03) - with a complete set of 23 video lectures from the Fall of 2004 Talks: For The Love Of Physics - ProfesSubjects

units of measurement | powers of ten | dimensional analysis | measurement uncertainty | scaling arguments | velocity | speed | acceleration | acceleration of gravity | vectors | motion | vector product | scalar product | projectiles | projectile trajectory | circular motion | centripetal motion | artifical gravity | force | Newton's Three Laws | eight | weightlessness | tension | friction | frictionless forces | static friction | dot products | cross products | kinematics | springs | pendulum | mechanical energy | kinetic energy | universal gravitation | resistive force | drag force | air drag | viscous terminal velocity | potential energy | heat; energy consumption | heat | energy consumption | collisions | center of mass | momentum | Newton's Cradle | impulse and impact | rocket thrust | rocket velocity | flywheels | inertia | torque | spinning rod | elliptical orbits | Kepler's Laws | Doppler shift | stellar dynamics | sound waves | electromagnets | binary star | black holes | rope tension | elasticity | speed of sound | pressure in fluid | Pascal's Principle | hydrostatic pressure | barometric pressure | submarines | buoyant force | Bernoulli's Equations | Archimede's Principle | floating | baloons | resonance | wind instruments | thermal expansion | shrink fitting | particles and waves | diffractionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allkoreancourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.Subjects

compressible fluid dynamics | fluid dynamics | external flows | internal flows | quasi-on-dimensional | quasi-1D | channel flow | multi-dimensional flows | nozzles | diffusers | inlets | loss generation | interactions | aerodynamic shapes | subsonic | supersonic | transonic | hypersonic | shock waves | vortices | disturbance behavior | unsteady | speed of sound | isentropic flows | non-isentropic flows | potential flows | rotational flows | shaft work | heat addition | mass addition | flow states | flow regime | velocity non-uniformities | density non-uniformities | fluid system components | lift | drag | continuum flow | shock strength | characteristics | governing equations | thermodynamic context | characteristic parameters | quasi-one-dimensional flow | disturbances | unsteady flow | gas dynamic discontinuities | detonations | linear two-dimensional flows | non-linear two-dimensional flowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.120 Compressible Flow (MIT)

Description

The course begins with the basics of compressible fluid dynamics, including governing equations, thermodynamic context and characteristic parameters. The next large block of lectures covers quasi-one-dimensional flow, followed by a discussion of disturbances and unsteady flows. The second half of the course comprises gas dynamic discontinuities, including shock waves and detonations, and concludes with another large block dealing with two-dimensional flows, both linear and non-linear.Subjects

compressible fluid dynamics | fluid dynamics | external flows | internal flows | quasi-on-dimensional | quasi-1D | channel flow | multi-dimensional flows | nozzles | diffusers | inlets | loss generation | interactions | aerodynamic shapes | subsonic | supersonic | transonic | hypersonic | shock waves | vortices | disturbance behavior | unsteady | speed of sound | isentropic flows | non-isentropic flows | potential flows | rotational flows | shaft work | heat addition | mass addition | flow states | flow regime | velocity non-uniformities | density non-uniformities | fluid system components | lift | drag | continuum flow | shock strength | characteristics | governing equations | thermodynamic context | characteristic parameters | quasi-one-dimensional flow | disturbances | unsteady flow | gas dynamic discontinuities | detonations | linear two-dimensional flows | non-linear two-dimensional flowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata