Searching for statistical analysis : 27 results found | RSS Feed for this search

Description

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site. Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.Subjects

Matlab | Matlab | modern computational techniques in chemical engineering | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | linear systems | scientific computing | scientific computing | solving sets of nonlinear algebraic equations | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | solving differential-algebraic (DAE) systems | probability theory | probability theory | use of probability theory in physical modeling | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of data estimation | statistical analysis of parameter estimation | statistical analysis of parameter estimation | finite difference techniques | finite difference techniques | finite element techniques | finite element techniques | converting partial differential equations | converting partial differential equations | Navier-Stokes equations | Navier-Stokes equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems are presented. Probability theory and its use in physical modeling is covered, as is the statistical analysis of data and parameter estimation. The finite difference and finite element techniques are presented for converting the partial differential equations obtained from transport phenomena to DAE systems. The use of these techniques will be demonstrated throughout the course in the MATLAB® computing environment. This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems are presented. Probability theory and its use in physical modeling is covered, as is the statistical analysis of data and parameter estimation. The finite difference and finite element techniques are presented for converting the partial differential equations obtained from transport phenomena to DAE systems. The use of these techniques will be demonstrated throughout the course in the MATLAB® computing environment.Subjects

Matlab | Matlab | modern computational techniques in chemical engineering | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | linear systems | scientific computing | scientific computing | solving sets of nonlinear algebraic equations | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | solving differential-algebraic (DAE) systems | probability theory | probability theory | use of probability theory in physical modeling | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of data estimation | statistical analysis of parameter estimation | statistical analysis of parameter estimation | finite difference techniques | finite difference techniques | finite element techniques | finite element techniques | converting partial differential equations | converting partial differential equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-10.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata17.869 Political Science Scope and Methods (MIT) 17.869 Political Science Scope and Methods (MIT)

Description

This course is designed to provide an introduction to a variety of empirical research methods used by political scientists. The primary aims of the course are to make you a more sophisticated consumer of diverse empirical research and to allow you to conduct sophisticated independent work in your junior and senior years. This is not a course in data analysis. Rather, it is a course on how to approach political science research. This course is designed to provide an introduction to a variety of empirical research methods used by political scientists. The primary aims of the course are to make you a more sophisticated consumer of diverse empirical research and to allow you to conduct sophisticated independent work in your junior and senior years. This is not a course in data analysis. Rather, it is a course on how to approach political science research.Subjects

political science | political science | empirical research | empirical research | scientific method | scientific method | research design | research design | models | models | samping | samping | statistical analysis | statistical analysis | measurement | measurement | ethics | ethics | empirical | empirical | research | research | scientific | scientific | methods | methods | statistics | statistics | statistical | statistical | analysis | analysis | political | political | politics | politics | science | science | design | design | sampling | sampling | theoretical | theoretical | observation | observation | data | data | case studies | case studies | cases | cases | empirical research methods | empirical research methods | political scientists | political scientists | empirical analysis | empirical analysis | theoretical analysis | theoretical analysis | research projects | research projects | department faculty | department faculty | inference | inference | writing | writing | revision | revision | oral presentations | oral presentations | experimental method | experimental method | theories | theories | political implications | political implicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.63 Laboratory in Cognitive Science (MIT) 9.63 Laboratory in Cognitive Science (MIT)

Description

9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports. 9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.Subjects

cognitive science | cognitive science | human perception | human perception | cognition | cognition | statistical analysis | statistical analysis | signal detection theory | signal detection theory | single factor design | single factor design | factorial design | factorial design | matlab | matlab | correlational studies | correlational studies | ethics in research | ethics in researchLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest. This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.Subjects

biostatistics | biostatistics | risk | risk | risk analysis | risk analysis | risk factor | risk factor | environmental agent | environmental agent | environetics | environetics | cause and effect | cause and effect | pollution | pollution | statistical analysis | statistical analysis | toxic | toxic | genetics | genetics | disease | disease | health | health | EPA | EPA | metabolism | metabolism | endocrine | endocrine | immunity | immunity | uncertainty | uncertainty | mortality | mortality | death rate | death rate | prediction | predictionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata17.869 Political Science Scope and Methods (MIT) 17.869 Political Science Scope and Methods (MIT)

Description

This course is designed to provide an introduction to a variety of empirical research methods used by political scientists. The primary aims of the course are to make you a more sophisticated consumer of diverse empirical research and to allow you to conduct advanced independent work in your junior and senior years. This is not a course in data analysis. Rather, it is a course on how to approach political science research. This course is designed to provide an introduction to a variety of empirical research methods used by political scientists. The primary aims of the course are to make you a more sophisticated consumer of diverse empirical research and to allow you to conduct advanced independent work in your junior and senior years. This is not a course in data analysis. Rather, it is a course on how to approach political science research.Subjects

political science | political science | empirical research | empirical research | scientific method | scientific method | research design | research design | models | models | sampling | sampling | statistical analysis | statistical analysis | measurement | measurement | ethics | ethicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-17.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.661 Receivers, Antennas, and Signals (MIT) 6.661 Receivers, Antennas, and Signals (MIT)

Description

This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation. This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation.Subjects

receiver | receiver | antenna | antenna | signal | signal | radio | radio | optical | optical | detection | detection | communications | communications | astronomy | astronomy | remote sensing | instrumentation | remote sensing | instrumentation | radar | radar | statistics | statistics | signal processing | signal processing | radiometer | radiometer | spectrometer | spectrometer | interferometer | interferometer | digital correlation | digital correlation | matched filter | matched filter | ambiguity function | ambiguity function | channel performance | channel performance | electromagnetic | electromagnetic | angular filtering | angular filtering | aperture synthesis | aperture synthesis | radiative transfer | radiative transfer | parameter estimation | parameter estimation | remote sensing | remote sensing | instrumentation | instrumentation | radio signals | radio signals | optical signals | optical signals | statistical analysis | statistical analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.63 Laboratory in Visual Cognition (MIT) 9.63 Laboratory in Visual Cognition (MIT)

Description

9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports. 9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.Subjects

cognitive science | cognitive science | human perception | human perception | cognition | cognition | statistical analysis | statistical analysis | signal detection theory | signal detection theory | single factor design | single factor design | factorial design | factorial design | matlab | matlab | correlational studies | correlational studies | ethics in research | ethics in research | visual cognition | visual cognition | thought | thought | psychology and cognitive science | psychology and cognitive science | information processing | information processing | organization of visual cognitive abilities. | organization of visual cognitive abilities.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataBehavioral Genetics (MIT) Behavioral Genetics (MIT)

Description

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications. How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.Subjects

cognition | cognition | language | language | emotion | emotion | personality | personality | behavior | behavior | gene mapping | gene mapping | personality traits | personality traits | Mendelian genetics | Mendelian genetics | genetic mapping techniques | genetic mapping techniques | statistical analysis | statistical analysis | environmental | environmental | genetic programs | genetic programs | evolutionary genetics | evolutionary genetics | social | social | ethical | ethical | 9.19 | 9.19 | 7.66 | 7.66License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-9.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest. This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.Subjects

biostatistics | biostatistics | risk | risk | risk analysis | risk analysis | risk factor | risk factor | environmental agent | environmental agent | environetics | environetics | cause and effect | cause and effect | pollution | pollution | statistical analysis | statistical analysis | toxic | toxic | genetics | genetics | disease | disease | health | health | EPA | EPA | metabolism | metabolism | endocrine | endocrine | immunity | immunity | uncertainty | uncertainty | mortality | mortality | death rate | death rate | prediction | prediction | 20.104 | 20.104 | 1.081 | 1.081 | ESD.053 | ESD.053 | BE.104J | BE.104J | BE.104 | BE.104License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The disciplines of music history and music theory have been slow to embrace the digital revolutions that have transformed other fields' text-based scholarship (history and literature in particular). Computational musicology opens the door to the possibility of understanding—even if at a broad level—trends and norms of behavior of large repertories of music. This class presents the major approaches, results, and challenges of computational musicology through readings in the field, gaining familiarity with datasets, and hands on workshops and assignments on data analysis and "corpus" (i.e., repertory) studies. Class sessions alternate between discussion/lecture and labs on digital tools for studying music. A background in music theory and/or history is required, and ex The disciplines of music history and music theory have been slow to embrace the digital revolutions that have transformed other fields' text-based scholarship (history and literature in particular). Computational musicology opens the door to the possibility of understanding—even if at a broad level—trends and norms of behavior of large repertories of music. This class presents the major approaches, results, and challenges of computational musicology through readings in the field, gaining familiarity with datasets, and hands on workshops and assignments on data analysis and "corpus" (i.e., repertory) studies. Class sessions alternate between discussion/lecture and labs on digital tools for studying music. A background in music theory and/or history is required, and exSubjects

music informatics | music informatics | computational methods | computational methods | statistical analysis | statistical analysis | musicology | musicology | music theory | music theory | open source software | open source softwareLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata10.34 Numerical Methods Applied to Chemical Engineering (MIT)

Description

This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems are presented. Probability theory and its use in physical modeling is covered, as is the statistical analysis of data and parameter estimation. The finite difference and finite element techniques are presented for converting the partial differential equations obtained from transport phenomena to DAE systems. The use of these techniques will be demonstrated throughout the course in the MATLAB® computing environment.Subjects

Matlab | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | scientific computing | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | probability theory | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of parameter estimation | finite difference techniques | finite element techniques | converting partial differential equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataBehavioral Genetics (MIT) Behavioral Genetics (MIT)

Description

How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications. How genetics can add to our understanding of cognition, language, emotion, personality, and behavior. Use of gene mapping to estimate risk factors for psychological disorders and variation in behavioral and personality traits. Mendelian genetics, genetic mapping techniques, and statistical analysis of large populations and their application to particular studies in behavioral genetics. Topics also include environmental influence on genetic programs, evolutionary genetics, and the larger scientific, social, ethical, and philosophical implications.Subjects

cognition | cognition | language | language | emotion | emotion | personality | personality | behavior | behavior | gene mapping | gene mapping | personality traits | personality traits | Mendelian genetics | Mendelian genetics | genetic mapping techniques | genetic mapping techniques | statistical analysis | statistical analysis | environmental | environmental | genetic programs | genetic programs | evolutionary genetics | evolutionary genetics | social | social | ethical | ethical | 9.19 | 9.19 | 7.66 | 7.66License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-alltraditionalchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata10.34 Numerical Methods Applied to Chemical Engineering (MIT)

Description

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.Subjects

Matlab | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | scientific computing | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | probability theory | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of parameter estimation | finite difference techniques | finite element techniques | converting partial differential equations | Navier-Stokes equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata10.34 Numerical Methods Applied to Chemical Engineering (MIT)

Description

This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems are presented. Probability theory and its use in physical modeling is covered, as is the statistical analysis of data and parameter estimation. The finite difference and finite element techniques are presented for converting the partial differential equations obtained from transport phenomena to DAE systems. The use of these techniques will be demonstrated throughout the course in the MATLAB® computing environment.Subjects

Matlab | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | scientific computing | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | probability theory | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of parameter estimation | finite difference techniques | finite element techniques | converting partial differential equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata10.34 Numerical Methods Applied to Chemical Engineering (MIT)

Description

Numerical methods for solving problems arising in heat and mass transfer, fluid mechanics, chemical reaction engineering, and molecular simulation. Topics: numerical linear algebra, solution of nonlinear algebraic equations and ordinary differential equations, solution of partial differential equations (e.g. Navier-Stokes), numerical methods in molecular simulation (dynamics, geometry optimization). All methods are presented within the context of chemical engineering problems. Familiarity with structured programming is assumed. The examples will use MATLAB®. Acknowledgements The instructor would like to thank Robert Ashcraft, Sandeep Sharma, David Weingeist, and Nikolay Zaborenko for their work in preparing materials for this course site.Subjects

Matlab | modern computational techniques in chemical engineering | mathematical techniques in chemical engineering | linear systems | scientific computing | solving sets of nonlinear algebraic equations | solving ordinary differential equations | solving differential-algebraic (DAE) systems | probability theory | use of probability theory in physical modeling | statistical analysis of data estimation | statistical analysis of parameter estimation | finite difference techniques | finite element techniques | converting partial differential equations | Navier-Stokes equationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Wales undergraduate level and as a CPD training resourceSubjects

ukoer | sfsoer | oer | open educational resources | metadata | analytical science | cpd training resource | analytical chemistry | measurement science | analytical process model | skills for analytical science | skills for analytical chemistry | analytical sample preparation | separation and concentration of analytes | units of measurement | volumetric techniques | gravimetric techniques | calibration methods | standard-addition | method of internal-standards | statistical analysis of data | measurement uncertainty | chromatographic methods | thin layer chromatography | gc | gas chromatography | hplc | high-performance liquid chromatography | capillary electrophoresis | potentiometry | ion-selective electrodes | amperometry | coulometry | plated film thickness | electromagnetic spectrum | electronic transitions | vibrational energy | comparison of spectroscopic techniques | fluorescence spectroscopy | mid infra-red spectroscopy | near infra-red spectroscopy | aas | atomic absorption spectroscopy | atomic emission spectroscopy | inductively coupled plasme emission spectroscopy | icpms | icpes | atomic fluorescence spectroscopy | comparison of elemental analysis techniques | principles of mass spectroscopy | electron impact mass spectroscopy | chemical ionisation mass spectroscopy | quadrupole mass spectroscopy | time-of-flight mass analysers | ion-trap mass analysers | off-line sampling systems | at-line sampling systems | on-line sampling systems | in-line sampling systems | performance characteristics of analytical techniques | flow injection analysis | fia | process gc | process ir | process ms | process uv/visible | quality management | quality assurance | qa | vam principles | quality control | qc | analytical method validation | analytical method performance characteristics | sampling of solids | liquids and gases | measurement of ph | karl fischer titration | uv/visible spectroscopy | beer's law | beer-lambert law | deviations from beer's law | mid ir spectroscopy | near ir spectroscopy | raman spectroscopy | fourier transform spectroscopies | x-ray methods | x-ray fluorescence spectroscopy | gc-ms | lc-ms | Physical sciences | F000License

Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-nd/2.0/uk/ http://creativecommons.org/licenses/by-nc-nd/2.0/uk/Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dcAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata17.869 Political Science Scope and Methods (MIT)

Description

This course is designed to provide an introduction to a variety of empirical research methods used by political scientists. The primary aims of the course are to make you a more sophisticated consumer of diverse empirical research and to allow you to conduct sophisticated independent work in your junior and senior years. This is not a course in data analysis. Rather, it is a course on how to approach political science research.Subjects

political science | empirical research | scientific method | research design | models | samping | statistical analysis | measurement | ethics | empirical | research | scientific | methods | statistics | statistical | analysis | political | politics | science | design | sampling | theoretical | observation | data | case studies | cases | empirical research methods | political scientists | empirical analysis | theoretical analysis | research projects | department faculty | inference | writing | revision | oral presentations | experimental method | theories | political implicationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.63 Laboratory in Cognitive Science (MIT)

Description

9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.Subjects

cognitive science | human perception | cognition | statistical analysis | signal detection theory | single factor design | factorial design | matlab | correlational studies | ethics in researchLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataBE.104J Chemicals in the Environment: Toxicology and Public Health (MIT)

Description

This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.Subjects

biostatistics | risk | risk analysis | risk factor | environmental agent | environetics | cause and effect | pollution | statistical analysis | toxic | genetics | disease | health | EPA | metabolism | endocrine | immunity | uncertainty | mortality | death rate | predictionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata20.104J Chemicals in the Environment: Toxicology and Public Health (BE.104J) (MIT)

Description

This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making. Throughout the term, students consider case studies of local and national interest.Subjects

biostatistics | risk | risk analysis | risk factor | environmental agent | environetics | cause and effect | pollution | statistical analysis | toxic | genetics | disease | health | EPA | metabolism | endocrine | immunity | uncertainty | mortality | death rate | prediction | 20.104 | 1.081 | ESD.053 | BE.104J | BE.104License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The disciplines of music history and music theory have been slow to embrace the digital revolutions that have transformed other fields' text-based scholarship (history and literature in particular). Computational musicology opens the door to the possibility of understanding—even if at a broad level—trends and norms of behavior of large repertories of music. This class presents the major approaches, results, and challenges of computational musicology through readings in the field, gaining familiarity with datasets, and hands on workshops and assignments on data analysis and "corpus" (i.e., repertory) studies. Class sessions alternate between discussion/lecture and labs on digital tools for studying music. A background in music theory and/or history is required, and exSubjects

music informatics | computational methods | statistical analysis | musicology | music theory | open source softwareLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata17.869 Political Science Scope and Methods (MIT)

Description

This course is designed to provide an introduction to a variety of empirical research methods used by political scientists. The primary aims of the course are to make you a more sophisticated consumer of diverse empirical research and to allow you to conduct advanced independent work in your junior and senior years. This is not a course in data analysis. Rather, it is a course on how to approach political science research.Subjects

political science | empirical research | scientific method | research design | models | sampling | statistical analysis | measurement | ethicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata9.63 Laboratory in Visual Cognition (MIT)

Description

9.63 teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and hands-on experimental exercises and requires an independent experimental project. Some experience in programming is desirable. To foster improved writing and presentation skills in conducting and critiquing research in cognitive science, students are required to provide reports and give oral presentations of three team experiments. A fourth individually conducted experiment includes a proposal with revision, and concluding written and oral reports.Subjects

cognitive science | human perception | cognition | statistical analysis | signal detection theory | single factor design | factorial design | matlab | correlational studies | ethics in research | visual cognition | thought | psychology and cognitive science | information processing | organization of visual cognitive abilities.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.661 Receivers, Antennas, and Signals (MIT)

Description

This course explores the detection and measurement of radio and optical signals encountered in communications, astronomy, remote sensing, instrumentation, and radar. Topics covered include: statistical analysis of signal processing systems, including radiometers, spectrometers, interferometers, and digital correlation systems; matched filters and ambiguity functions; communications channel performance; measurement of random electromagnetic fields, angular filtering properties of antennas, interferometers, and aperture synthesis systems; and radiative transfer and parameter estimation.Subjects

receiver | antenna | signal | radio | optical | detection | communications | astronomy | remote sensing | instrumentation | radar | statistics | signal processing | radiometer | spectrometer | interferometer | digital correlation | matched filter | ambiguity function | channel performance | electromagnetic | angular filtering | aperture synthesis | radiative transfer | parameter estimation | remote sensing | instrumentation | radio signals | optical signals | statistical analysisLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata