Searching for superconductivity : 25 results found | RSS Feed for this search

1

6.763 Applied Superconductivity (MIT) 6.763 Applied Superconductivity (MIT)

Description

This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.Technical RequirementsMATLAB® software is required to run the .m files found on this course site.MATLAB® is a trademark of The MathWorks, Inc. This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.Technical RequirementsMATLAB® software is required to run the .m files found on this course site.MATLAB® is a trademark of The MathWorks, Inc.

Subjects

applied superconductivity | applied superconductivity | superconducting electronics | superconducting electronics | electrodynamics of superconductors | electrodynamics of superconductors | London's model | London's model | flux quantization | flux quantization | Josephson Junctions | Josephson Junctions | superconducting quantum devices | superconducting quantum devices | equivalent circuits | equivalent circuits | high-speed superconducting electronics | high-speed superconducting electronics | quantized circuits | quantized circuits | quantum computing | quantum computing | type II superconductors | type II superconductors | critical magnetic fields | critical magnetic fields | pinning | pinning | the critical state model | the critical state model | superconducting materials | superconducting materials | microscopic theory of superconductivity | microscopic theory of superconductivity | Electric conductivity | Electric conductivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.763 Applied Superconductivity (MIT) 6.763 Applied Superconductivity (MIT)

Description

This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity. This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.

Subjects

applied superconductivity | applied superconductivity | superconducting electronics | superconducting electronics | electrodynamics of superconductors | electrodynamics of superconductors | London's model | London's model | flux quantization | flux quantization | Josephson Junctions | Josephson Junctions | superconducting quantum devices | superconducting quantum devices | equivalent circuits | equivalent circuits | high-speed superconducting electronics | high-speed superconducting electronics | quantized circuits | quantized circuits | quantum computing | quantum computing | type II superconductors | type II superconductors | critical magnetic fields | critical magnetic fields | pinning | pinning | the critical state model | the critical state model | superconducting materials | superconducting materials | microscopic theory of superconductivity | microscopic theory of superconductivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT) II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs. Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | Junior Lab | experimental | experimental | atomic | atomic | nuclear | nuclear | physics | physics | optics | optics | photoelectric effect | photoelectric effect | poisson | poisson | statistics | statistics | electromagnetic pulse | electromagnetic pulse | compton scattering | compton scattering | Franck-Hertz experiment | Franck-Hertz experiment | relativistic dynamics | relativistic dynamics | nuclear magnetic resonance | nuclear magnetic resonance | spin echoes | spin echoes | cosmic-ray muons | cosmic-ray muons | Rutherford Scattering | Rutherford Scattering | emission spectra | emission spectra | neutron physics | neutron physics | Johnson noise | Johnson noise | shot noise | shot noise | quantum mechanics | quantum mechanics | alpha decay | alpha decay | radio astrophysics | radio astrophysics | Zeeman effect | Zeeman effect | rubidium | rubidium | M?ssbauer | M?ssbauer | spectroscopy | spectroscopy | X-Ray physics | X-Ray physics | superconductivity | superconductivity | Doppler-free | Doppler-free | laser | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT) II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs. Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | Junior Lab | experimental | experimental | atomic | atomic | nuclear | nuclear | physics | physics | optics | optics | photoelectric effect | photoelectric effect | poisson | poisson | statistics | statistics | electromagnetic pulse | electromagnetic pulse | compton scattering | compton scattering | Franck-Hertz experiment | Franck-Hertz experiment | relativistic dynamics | relativistic dynamics | nuclear magnetic resonance | nuclear magnetic resonance | spin echoes | spin echoes | cosmic-ray muons | cosmic-ray muons | Rutherford Scattering | Rutherford Scattering | emission spectra | emission spectra | neutron physics | neutron physics | Johnson noise | Johnson noise | shot noise | shot noise | quantum mechanics | quantum mechanics | alpha decay | alpha decay | radio astrophysics | radio astrophysics | Zeeman effect | Zeeman effect | rubidium | rubidium | M?ssbauer | M?ssbauer | spectroscopy | spectroscopy | X-Ray physics | X-Ray physics | superconductivity | superconductivity | Doppler-free | Doppler-free | laser | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.513 Many-Body Theory for Condensed Matter Systems (MIT) 8.513 Many-Body Theory for Condensed Matter Systems (MIT)

Description

This course covers the concepts and physical pictures behind various phenomena that appear in interacting many-body systems. Visualization occurs through concentration on path integral, mean-field theories and semi-classical picture of fluctuations around mean-field state. This course covers the concepts and physical pictures behind various phenomena that appear in interacting many-body systems. Visualization occurs through concentration on path integral, mean-field theories and semi-classical picture of fluctuations around mean-field state.

Subjects

second quantization | second quantization | path-integrals | path-integrals | condensed matter | condensed matter | Goldstone modes | Goldstone modes | rigidity | rigidity | topological defects | topological defects | Mean field theory | Mean field theory | Landau Fermi Liquid Theory | Landau Fermi Liquid Theory | BCS superconductivity | BCS superconductivity | Quantum Phase Transitions | Quantum Phase Transitions | Renormalization group | Renormalization group | Duality transformations | Duality transformations | Luttinger Liquid Theory | Luttinger Liquid Theory | bosonization | bosonization | broken symmetry | broken symmetry | fractionalization | fractionalization | Fractional quantum Hall effect | Fractional quantum Hall effect | spin liquids | spin liquids | gauge theories in condensed matter | gauge theories in condensed matter

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.763 Applied Superconductivity (MIT)

Description

This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.

Subjects

applied superconductivity | superconducting electronics | electrodynamics of superconductors | London's model | flux quantization | Josephson Junctions | superconducting quantum devices | equivalent circuits | high-speed superconducting electronics | quantized circuits | quantum computing | type II superconductors | critical magnetic fields | pinning | the critical state model | superconducting materials | microscopic theory of superconductivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allpersiancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.763 Applied Superconductivity (MIT)

Description

This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.Technical RequirementsMATLAB® software is required to run the .m files found on this course site.MATLAB® is a trademark of The MathWorks, Inc.

Subjects

applied superconductivity | superconducting electronics | electrodynamics of superconductors | London's model | flux quantization | Josephson Junctions | superconducting quantum devices | equivalent circuits | high-speed superconducting electronics | quantized circuits | quantum computing | type II superconductors | critical magnetic fields | pinning | the critical state model | superconducting materials | microscopic theory of superconductivity | Electric conductivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

6.763 Applied Superconductivity (MIT)

Description

This course provides a phenomenological approach to superconductivity, with emphasis on superconducting electronics. Topics include: electrodynamics of superconductors, London's model, flux quantization, Josephson Junctions, superconducting quantum devices, equivalent circuits, high-speed superconducting electronics, and quantized circuits for quantum computing. The course also provides an overview of type II superconductors, critical magnetic fields, pinning, the critical state model, superconducting materials, and microscopic theory of superconductivity.

Subjects

applied superconductivity | superconducting electronics | electrodynamics of superconductors | London's model | flux quantization | Josephson Junctions | superconducting quantum devices | equivalent circuits | high-speed superconducting electronics | quantized circuits | quantum computing | type II superconductors | critical magnetic fields | pinning | the critical state model | superconducting materials | microscopic theory of superconductivity

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8

Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8

Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allkoreancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8

Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Model of Cooper pairs: distortion of ion lattice

Description

Cooper pairs. Putting one ball bearing (the "electron") resting on a rubber sheet (the "lattice") will cause it to stretch creating a depression in which the ball sits. Another ball placed near enough to the first causes there to be a coupling between them that would otherwise not be there without the rubber sheet. From TLP: Superconductivity, http://www.doitpoms.ac.uk/tlplib/superconductivity/cooper.php

Subjects

superconductivity | Cooper pairs | DoITPoMS | University of Cambridge | video | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_videos.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Model of Cooper pairs: coupling of electrons

Description

Cooper pairs. One ball makes a depression in the rubber sheet and moves on. A second ball rolls into the well and become effectively bound to the first ball. From TLP: Superconductivity, http://www.doitpoms.ac.uk/tlplib/superconductivity/cooper.php

Subjects

superconductivity | Cooper pairs | DoITPoMS | University of Cambridge | video | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_videos.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Superconductivity effect: levitation in magnetic field

Description

A section of superconducting material is placed above a magnetic track. The superconductor is tapped sideways and travels around the track with virtually no resistance to its motion. From TLP: Superconductivity, http://www.doitpoms.ac.uk/tlplib/superconductivity/discovery.php

Subjects

superconductivity | Meissner effect | DoITPoMS | University of Cambridge | video | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_videos.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Phase transition in superconductors

Description

The superconducting material heats up through its transition temperature. The field from the magnetic track begins to penetrate and the material ceases to levitate. From TLP: Superconductivity, http://www.doitpoms.ac.uk/tlplib/superconductivity/discovery.php

Subjects

superconductivity | critical temperature | DoITPoMS | University of Cambridge | video | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_videos.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Functional Behaviour of Materials: Superconductivity

Description

This set of animations covers the principles and applications of superconductivity. From TLP: Superconductivity

Subjects

superconductor | superconductivity | conductor | magnetic | magnetism | paramagnetic | diamagnetic | cooper pair | type i | type ii | type 1 | type 2 | maglev | MRI | levitation | Tc | two fluid model | london conjecture | DoITPoMS | University of Cambridge | animation | corematerials | ukoer

License

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://core.materials.ac.uk/rss/doitpoms_animations.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Superconductivity

Description

The fascinating phenomenon of superconductivity and its potential applications have attracted the attention of scientists, engineers and businessmen. Intense research has taken place to discover new superconductors, to understand the physics that underlies the properties of superconductors, and to develop new applications for these materials. In this unit you will read about the history of superconductors, taking a brief look at their properties. You will also learn about modelling the properties of superconductors and the two different types of superconductor that exist today.

Subjects

science and nature | critical_current | diamagnetism | electricity | electromagnetism | electrons | magnetic_field | meissner_effect | modelling | physics | superconductivity | superconductors | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Model of Cooper pairs: distortion of ion lattice

Description

quot;) will cause it to stretch creating a depression in which the ball sits. Another ball placed near enough to the first causes there to be a coupling between them that would otherwise not be there without the rubber sheet. From TLP: Superconductivity, http://www.doitpoms.ac.uk/tlplib/superconductivity/cooper.php

Subjects

superconductivity | cooper pairs | doitpoms | university of cambridge | video | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Model of Cooper pairs: coupling of electrons

Description

Cooper pairs. One ball makes a depression in the rubber sheet and moves on. A second ball rolls into the well and become effectively bound to the first ball. From TLP: Superconductivity, http://www.doitpoms.ac.uk/tlplib/superconductivity/cooper.php

Subjects

superconductivity | cooper pairs | doitpoms | university of cambridge | video | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Superconductivity effect: levitation in magnetic field

Description

A section of superconducting material is placed above a magnetic track. The superconductor is tapped sideways and travels around the track with virtually no resistance to its motion. From TLP: Superconductivity, http://www.doitpoms.ac.uk/tlplib/superconductivity/discovery.php

Subjects

superconductivity | meissner effect | doitpoms | university of cambridge | video | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Phase transition in superconductors

Description

The superconducting material heats up through its transition temperature. The field from the magnetic track begins to penetrate and the material ceases to levitate. From TLP: Superconductivity, http://www.doitpoms.ac.uk/tlplib/superconductivity/discovery.php

Subjects

superconductivity | critical temperature | doitpoms | university of cambridge | video | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Functional Behaviour of Materials: Superconductivity

Description

This set of animations covers the principles and applications of superconductivity. From TLP: Superconductivity

Subjects

superconductor | superconductivity | conductor | magnetic | magnetism | paramagnetic | diamagnetic | cooper pair | type i | type ii | type 1 | type 2 | maglev | mri | levitation | tc | two fluid model | london conjecture | doitpoms | university of cambridge | animation | corematerials | ukoer | Engineering | H000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring.The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | experimental | atomic | nuclear | physics | optics | photoelectric effect | poisson | statistics | electromagnetic pulse | compton scattering | Franck-Hertz experiment | relativistic dynamics | nuclear magnetic resonance | spin echoes | cosmic-ray muons | Rutherford Scattering | emission spectra | neutron physics | Johnson noise | shot noise | quantum mechanics | alpha decay | radio astrophysics | Zeeman effect | rubidium | M?ssbauer | spectroscopy | X-Ray physics | superconductivity | Doppler-free | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

II "Junior Lab" (MIT)

Description

Junior Lab consists of two undergraduate courses in experimental physics. The courses are offered by the MIT Physics Department, and are usually taken by Juniors (hence the name). Officially, the courses are called Experimental Physics I and II and are numbered 8.13 for the first half, given in the fall semester, and 8.14 for the second half, given in the spring. The purposes of Junior Lab are to give students hands-on experience with some of the experimental basis of modern physics and, in the process, to deepen their understanding of the relations between experiment and theory, mostly in atomic and nuclear physics. Each term, students choose 5 different experiments from a list of 21 total labs.

Subjects

Junior Lab | experimental | atomic | nuclear | physics | optics | photoelectric effect | poisson | statistics | electromagnetic pulse | compton scattering | Franck-Hertz experiment | relativistic dynamics | nuclear magnetic resonance | spin echoes | cosmic-ray muons | Rutherford Scattering | emission spectra | neutron physics | Johnson noise | shot noise | quantum mechanics | alpha decay | radio astrophysics | Zeeman effect | rubidium | M?ssbauer | spectroscopy | X-Ray physics | superconductivity | Doppler-free | laser

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.513 Many-Body Theory for Condensed Matter Systems (MIT)

Description

This course covers the concepts and physical pictures behind various phenomena that appear in interacting many-body systems. Visualization occurs through concentration on path integral, mean-field theories and semi-classical picture of fluctuations around mean-field state.

Subjects

second quantization | path-integrals | condensed matter | Goldstone modes | rigidity | topological defects | Mean field theory | Landau Fermi Liquid Theory | BCS superconductivity | Quantum Phase Transitions | Renormalization group | Duality transformations | Luttinger Liquid Theory | bosonization | broken symmetry | fractionalization | Fractional quantum Hall effect | spin liquids | gauge theories in condensed matter

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata