Searching for telescopes : 16 results found | RSS Feed for this search

1

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models. Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402 | plusars | plusars | galaxies | galaxies | normal and active galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.409 Hands-On Astronomy: Observing Stars and Planets (MIT) 12.409 Hands-On Astronomy: Observing Stars and Planets (MIT)

Description

This class introduces the student to the use of small telescopes, either for formal research or as a hobby. This course covers background for and techniques of visual observation, electronic imaging, and spectroscopy of the Moon, planets, satellites, stars, and brighter deep-space objects. Weekly outdoor observing sessions using 8-inch diameter telescopes when weather permits. Indoor sessions introduce needed skills. Introduction to contemporary observational astronomy including astronomical computing, image and data processing, and how astronomers work. Student must maintain a careful and complete written log which is graded. (Limited enrollment with priority to freshmen. Consumes an entire evening each week; 100% attendance at observing sessions required to pass.) This class introduces the student to the use of small telescopes, either for formal research or as a hobby. This course covers background for and techniques of visual observation, electronic imaging, and spectroscopy of the Moon, planets, satellites, stars, and brighter deep-space objects. Weekly outdoor observing sessions using 8-inch diameter telescopes when weather permits. Indoor sessions introduce needed skills. Introduction to contemporary observational astronomy including astronomical computing, image and data processing, and how astronomers work. Student must maintain a careful and complete written log which is graded. (Limited enrollment with priority to freshmen. Consumes an entire evening each week; 100% attendance at observing sessions required to pass.)

Subjects

moon | moon | telescopes | telescopes | stars | stars | planets | planets | spectroscopy | spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8

Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8

Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allkoreancourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.409 Hands-On Astronomy: Observing Stars and Planets (MIT)

Description

This class introduces the student to the use of small telescopes, either for formal research or as a hobby. This course covers background for and techniques of visual observation, electronic imaging, and spectroscopy of the Moon, planets, satellites, stars, and brighter deep-space objects. Weekly outdoor observing sessions using 8-inch diameter telescopes when weather permits. Indoor sessions introduce needed skills. Introduction to contemporary observational astronomy including astronomical computing, image and data processing, and how astronomers work. Student must maintain a careful and complete written log which is graded. (Limited enrollment with priority to freshmen. Consumes an entire evening each week; 100% attendance at observing sessions required to pass.)

Subjects

moon | telescopes | stars | planets | spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402 | plusars | galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.02 Electricity and Magnetism (MIT)

Description

In addition to the basic concepts of Electromagnetism, a vast variety of interesting topics are covered in this course: Lightning, Pacemakers, Electric Shock Treatment, Electrocardiograms, Metal Detectors, Musical Instruments, Magnetic Levitation, Bullet Trains, Electric Motors, Radios, TV, Car Coils, Superconductivity, Aurora Borealis, Rainbows, Radio Telescopes, Interferometers, Particle Accelerators (a.k.a. Atom Smashers or Colliders), Mass Spectrometers, Red Sunsets, Blue Skies, Haloes around Sun and Moon, Color Perception, Doppler Effect, Big-Bang Cosmology. OpenCourseWare presents another version of 8.02T: Electricity and Magnetism. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Vibrations and Waves (8

Subjects

Introduction to electromagnetism and electrostatics | electric charge | Coulomb's law | electric structure of matter | conductors | dielectrics | Concepts of electrostatic field and potential | electrostatic energy | Electric currents | magnetic fields | Ampere's law | Magnetic materials | Time-varying fields | Faraday's law of induction | Basic electric circuits | Electromagnetic waves | Maxwell's equations | lightning | pacemakers | electric shock treatment | electrocardiograms | metal detectors | musical instruments | magnetic levitation | bullet trains | electric motors | radios | TV | car coils | superconductivity | aurora borealis | rainbows | radio telescopes | interferometers | particle accelerators (a.k.a. atom smashers or colliders) | mass spectrometers | red sunsets | blue skies | haloes around sun and moon | color perception | Doppler effect | super-novae | binary stars | neutron stars | black holes

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.409 Hands-On Astronomy: Observing Stars and Planets (MIT)

Description

This class introduces the student to the use of small telescopes, either for formal research or as a hobby. This course covers background for and techniques of visual observation, electronic imaging, and spectroscopy of the Moon, planets, satellites, stars, and brighter deep-space objects. Weekly outdoor observing sessions using 8-inch diameter telescopes when weather permits. Indoor sessions introduce needed skills. Introduction to contemporary observational astronomy including astronomical computing, image and data processing, and how astronomers work. Student must maintain a careful and complete written log which is graded. (Limited enrollment with priority to freshmen. Consumes an entire evening each week; 100% attendance at observing sessions required to pass.)

Subjects

moon | telescopes | stars | planets | spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.409 Hands-On Astronomy: Observing Stars and Planets (MIT)

Description

This class introduces the student to the use of small telescopes, either for formal research or as a hobby. This course covers background for and techniques of visual observation, electronic imaging, and spectroscopy of the Moon, planets, satellites, stars, and brighter deep-space objects. Weekly outdoor observing sessions using 8-inch diameter telescopes when weather permits. Indoor sessions introduce needed skills. Introduction to contemporary observational astronomy including astronomical computing, image and data processing, and how astronomers work. Student must maintain a careful and complete written log which is graded. (Limited enrollment with priority to freshmen. Consumes an entire evening each week; 100% attendance at observing sessions required to pass.)

Subjects

moon | telescopes | stars | planets | spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Telescopes and spectrographs

Description

This unit looks at how telescopes and spectrographs are designed to improve our ability to observe the universe. You will examine how different technologies have been developed over the last four hundred years to enable us to look deep into space.

Subjects

astronomical_images | spectrographs | telescopes | science and nature | astronomy | diffraction | optics | reflectors | refraction | refractors | spectra | wavelength | Education | X000

License

Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales http://creativecommons.org/licenses/by-nc-sa/2.0/uk/ http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

Site sourced from

http://dspace.jorum.ac.uk/oai/request?verb=ListRecords&metadataPrefix=oai_dc

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

"The Pirates" Under False Colors - Can They Capture the Ship of State?

Description

Collection: Cornell University Collection of Political Americana, Cornell University Library Repository: Susan H. Douglas Political Americana Collection, #2214 Rare & Manuscript Collections, Cornell University Library, Cornell University Title: "The Pirates" Under False Colors - Can They Capture the Ship of State? Political Party: Democratic Election Year: 1872 Date Made: 1872 Measurement: Sheet: 15.75 x 22 in.; 40.005 x 55.88 cm Classification: Publications Persistent URI: hdl.handle.net/1813.001/5zpn There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | illustrations | sheetsinformationartifacts | politicalcartoons | portraits | greeleyhorace | brownbgratz | grantulyssess18221885 | johnsonandrew18081875 | reidwhitelaw | unclesam | symbols | sailingships | violins | clergy | pirates | telescopes | weapons | americanflags | newspapers | politicians | journalists | caricatures | politics | schurzcarl | culidentifier:value=2214pr0149 | culidentifier:lunafield=idnumber

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Mix and Match Portrait Cards, 1881

Description

Collection: Cornell University Collection of Political Americana, Cornell University Library Repository: Susan H. Douglas Political Americana Collection, #2214 Rare & Manuscript Collections, Cornell University Library, Cornell University Title: Mix and Match Portrait Cards, 1881 Political Party: Greenback Election Year: 1880 Date Made: 1881 Measurement: Portrait Card (each): 3 x 7 in.; 7.62 x 17.78 cm Classification: Artifacts Persistent URI: hdl.handle.net/1813.001/5zkx There are no known U.S. copyright restrictions on this image. The digital file is owned by the Cornell University Library which is making it freely available with the request that, when possible, the Library be credited as its source.

Subjects

cornelluniversitylibrary | puzzles | portraits | politicalcartoons | setsgroups | grantulyssess18221885 | politics | caricatures | africanamericans | butlerbenjaminf | quotationstexts | telescopes | generals | uniforms | kilts | firemen | flowers | women | nativeamericans | necklaces | cigars | smoking | axes | peace | papermoney | industry | mormonchurch | culidentifier:value=2214bb0162 | culidentifier:lunafield=idnumber

License

No known copyright restrictions

Site sourced from

Cornell University Library | FlickR

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | stars | interstellar medium | the Galaxy | the Universe | planets | planet formation | star formation | stellar evolution | supernovae | compact objects | white dwarfs | neutron stars | black holes | plusars | binary X-ray sources | star clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | galaxies | normal and active galaxies | jets | gravitational lensing | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | big-bang nucleosynthesis | pulsars | binary X-ray sources | gas | dust | magnetic fields | cosmic rays | galaxy | universe | astrophysics | Sun | supernova | globular clusters | open clusters | jets | Newtonian cosmology | dynamical expansion | thermal history | normal galaxies | active galaxies | Greek astronomy | physics | Copernicus | Tycho | Kepler | Galileo | classical mechanics | circular orbits | full kepler orbit problem | electromagnetic radiation | matter | telescopes | detectors | 8.282 | 12.402 | plusars | galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.409 Hands-On Astronomy: Observing Stars and Planets (MIT)

Description

This class introduces the student to the use of small telescopes, either for formal research or as a hobby. This course covers background for and techniques of visual observation, electronic imaging, and spectroscopy of the Moon, planets, satellites, stars, and brighter deep-space objects. Weekly outdoor observing sessions using 8-inch diameter telescopes when weather permits. Indoor sessions introduce needed skills. Introduction to contemporary observational astronomy including astronomical computing, image and data processing, and how astronomers work. Student must maintain a careful and complete written log which is graded. (Limited enrollment with priority to freshmen. Consumes an entire evening each week; 100% attendance at observing sessions required to pass.)

Subjects

moon | telescopes | stars | planets | spectroscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata