Searching for thermochemistry : 4 results found | RSS Feed for this search
16.512 Rocket Propulsion (MIT) 16.512 Rocket Propulsion (MIT)
Description
This class focuses on chemical rocket propulsion systems for launch, orbital, and interplanetary flight. It studies the modeling of solid, liquid-bipropellant, and hybrid rocket engines. Thermochemistry, prediction of specific impulse, and nozzle flows including real gas and kinetic effects will also be covered. Other topics to be covered include structural constraints, propellant feed systems, turbopumps, and combustion processes in solid, liquid, and hybrid rockets. This class focuses on chemical rocket propulsion systems for launch, orbital, and interplanetary flight. It studies the modeling of solid, liquid-bipropellant, and hybrid rocket engines. Thermochemistry, prediction of specific impulse, and nozzle flows including real gas and kinetic effects will also be covered. Other topics to be covered include structural constraints, propellant feed systems, turbopumps, and combustion processes in solid, liquid, and hybrid rockets.Subjects
chemical rocket propulsion systems for launch | chemical rocket propulsion systems for launch | orbital | orbital | and interplanetary flight | and interplanetary flight | Modeling of solid propellant | Modeling of solid propellant | liquid-bipropellant | liquid-bipropellant | hybrid rocket engines | hybrid rocket engines | thermochemistry | thermochemistry | prediction of specific impulse | prediction of specific impulse | nozzle flows including real gas and kinetic effects | nozzle flows including real gas and kinetic effects | structural constraints | structural constraints | propellant feed systems | propellant feed systems | turbopumps | turbopumps | combustion processes in solid | combustion processes in solid | liquid | liquid | and hybrid rockets | and hybrid rockets | cooling | cooling | heat sink | heat sink | ablative | ablativeLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-transportation.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadataDescription
This subject deals primarily with equilibrium properties of macroscopic and microscopic systems, basic thermodynamics, chemical equilibrium of reactions in gas and solution phase, and macromolecular interactions. This subject deals primarily with equilibrium properties of macroscopic and microscopic systems, basic thermodynamics, chemical equilibrium of reactions in gas and solution phase, and macromolecular interactions.Subjects
thermodynamics | thermodynamics | biomolecular systems | biomolecular systems | equilibrium properties | equilibrium properties | first law of thermodynamics | first law of thermodynamics | second law of thermodynamics | second law of thermodynamics | third law of thermodynamics | third law of thermodynamics | thermochemistry | thermochemistry | entropy | entropy | Gibbs function | Gibbs function | chemical equilibrium | chemical equilibrium | macromolecular structure | macromolecular structure | binding cooperativity | binding cooperativityLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata16.512 Rocket Propulsion (MIT)
Description
This class focuses on chemical rocket propulsion systems for launch, orbital, and interplanetary flight. It studies the modeling of solid, liquid-bipropellant, and hybrid rocket engines. Thermochemistry, prediction of specific impulse, and nozzle flows including real gas and kinetic effects will also be covered. Other topics to be covered include structural constraints, propellant feed systems, turbopumps, and combustion processes in solid, liquid, and hybrid rockets.Subjects
chemical rocket propulsion systems for launch | orbital | and interplanetary flight | Modeling of solid propellant | liquid-bipropellant | hybrid rocket engines | thermochemistry | prediction of specific impulse | nozzle flows including real gas and kinetic effects | structural constraints | propellant feed systems | turbopumps | combustion processes in solid | liquid | and hybrid rockets | cooling | heat sink | ablativeLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata20.110J Thermodynamics of Biomolecular Systems (MIT)
Description
This subject deals primarily with equilibrium properties of macroscopic and microscopic systems, basic thermodynamics, chemical equilibrium of reactions in gas and solution phase, and macromolecular interactions.Subjects
thermodynamics | biomolecular systems | equilibrium properties | first law of thermodynamics | second law of thermodynamics | third law of thermodynamics | thermochemistry | entropy | Gibbs function | chemical equilibrium | macromolecular structure | binding cooperativityLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata