Searching for ula : 3418 results found | RSS Feed for this search

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

20.320 Biomolecular Kinetics and Cell Dynamics (MIT) 20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling | cell population scale | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Analysis of Biomolecular and Cellular Systems (MIT) 20.320 Analysis of Biomolecular and Cellular Systems (MIT)

Description

This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling. This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

biological engineering | biological engineering | kinase | kinase | PyMOL | PyMOL | PyRosetta | PyRosetta | MATLAB | MATLAB | Michaelis-Menten | Michaelis-Menten | bioreactor | bioreactor | bromodomain | bromodomain | protein-ligand interactions | protein-ligand interactions | titration analysis | titration analysis | fractional separation | fractional separation | isothermal titration calorimetry | isothermal titration calorimetry | ITC | ITC | mass spectrometry | mass spectrometry | MS | MS | co-immunoprecipitation | co-immunoprecipitation | Co-IP | Co-IP | Forster resonance energy transfer | Forster resonance energy transfer | FRET | FRET | primary ligation assay | primary ligation assay | PLA | PLA | surface plasmon resonance | surface plasmon resonance | SPR | SPR | enzyme kinetics | enzyme kinetics | kinase engineering | kinase engineering | competitive inhibition | competitive inhibition | epidermal growth factor receptor | epidermal growth factor receptor | mitogen-activated protein kinase | mitogen-activated protein kinase | MAPK | MAPK | genome editing | genome editing | Imatinib | Imatinib | Gleevec | Gleevec | Glivec | Glivec | drug delivery | drug delivery | kinetics of molecular processes | kinetics of molecular processes | dynamics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | kinetics of cellular processes | dynamics of cellular processes | dynamics of cellular processes | intracellular scale | intracellular scale | extracellular scale | extracellular scale | and cell population scale | and cell population scale | biotechnology applications | biotechnology applications | gene regulation networks | gene regulation networks | nucleic acid hybridization | nucleic acid hybridization | signal transduction pathways | signal transduction pathways | cell populations in tissues | cell populations in tissues | cell populations in bioreactors | cell populations in bioreactors | experimental methods | experimental methods | quantitative analysis | quantitative analysis | computational modeling | computational modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.349 Biological Computing: At the Crossroads of Engineering and Science (MIT) 7.349 Biological Computing: At the Crossroads of Engineering and Science (MIT)

Description

Imagine you are a salesman needing to visit 100 cities connected by a set of roads. Can you do it while stopping in each city only once? Even a supercomputer working at 1 trillion operations per second would take longer than the age of the universe to find a solution when considering each possibility in turn. In 1994, Leonard Adleman published a paper in which he described a solution, using the tools of molecular biology, for a smaller 7-city example of this problem. His paper generated enormous scientific and public interest, and kick-started the field of Biological Computing, the main subject of this discussion based seminar course. Students will analyze the Adleman paper, and the papers that preceded and followed it, with an eye for identifying the engineering and scientific aspects of Imagine you are a salesman needing to visit 100 cities connected by a set of roads. Can you do it while stopping in each city only once? Even a supercomputer working at 1 trillion operations per second would take longer than the age of the universe to find a solution when considering each possibility in turn. In 1994, Leonard Adleman published a paper in which he described a solution, using the tools of molecular biology, for a smaller 7-city example of this problem. His paper generated enormous scientific and public interest, and kick-started the field of Biological Computing, the main subject of this discussion based seminar course. Students will analyze the Adleman paper, and the papers that preceded and followed it, with an eye for identifying the engineering and scientific aspects of

Subjects

biological computing | biological computing | Leonard Adleman | Leonard Adleman | exquisite detection | exquisite detection | whole-cell computing | whole-cell computing | computation | computation | molecular biology | molecular biology | biotin-avidin | biotin-avidin | magnetic beads | magnetic beads | cellular processes | cellular processes | combinatorial problems | combinatorial problems | self-assembly | self-assembly | nanodevices | nanodevices | molecular machines | molecular machines | quorum sensing | quorum sensing | molecular switches | molecular switches | ciliates | ciliates | molecular gates | molecular gates | molecular circuits | molecular circuits | genetic switch | genetic switch | cellular networks | cellular networks | genetic networks | genetic networks | genetic circuits | genetic circuits

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.18 Biomolecular Feedback Systems (MIT) 2.18 Biomolecular Feedback Systems (MIT)

Description

This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control. This course focuses on feedback control mechanisms that living organisms implement at the molecular level to execute their functions, with emphasis on techniques to design novel systems with prescribed behaviors. Students will learn how biological functions can be understood and designed using notions from feedback control.

Subjects

biomolecular feedback systems | biomolecular feedback systems | systems biology | systems biology | modeling | modeling | feedback | feedback | cell | cell | system | system | control | control | dynamical | dynamical | input/output | input/output | synthetic biology | synthetic biology | techniques | techniques | transcription | transcription | translation | translation | transcriptional regulation | transcriptional regulation | post-transcriptional regulation | post-transcriptional regulation | cellular subsystems | cellular subsystems | dynamic behavior | dynamic behavior | analysis | analysis | equilibrium | equilibrium | robustness | robustness | oscillatory behavior | oscillatory behavior | bifurcations | bifurcations | model reduction | model reduction | stochastic | stochastic | biochemical | biochemical | simulation | simulation | linear | linear | circuit | circuit | design | design | biological circuit design | biological circuit design | negative autoregulation | negative autoregulation | toggle switch | toggle switch | repressilator | repressilator | activator-repressor clock | activator-repressor clock | IFFL | IFFL | incoherent feedforward loop | incoherent feedforward loop | bacterial chemotaxis | bacterial chemotaxis | interconnecting components | interconnecting components | modularity | modularity | retroactivity | retroactivity | gene circuit | gene circuit

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.014 Introductory Biology (MIT) 7.014 Introductory Biology (MIT)

Description

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.7.014 focuses on the application of these fundamental principles, toward an understanding of microorganisms as geochemical agents responsible for the evolution and renewal of the biosphere and of their role in human health

Subjects

microorganisms | microorganisms | geochemistry | geochemistry | geochemical agents | geochemical agents | biosphere | biosphere | bacterial genetics | bacterial genetics | carbon metabolism | carbon metabolism | energy metabolism | energy metabolism | productivity | productivity | biogeochemical cycles | biogeochemical cycles | molecular evolution | molecular evolution | population genetics | population genetics | evolution | evolution | population growth | population growth | biology | biology | biochemistry | biochemistry | genetics | genetics | molecular biology | molecular biology | recombinant DNA | recombinant DNA | cell cycle | cell cycle | cell signaling | cell signaling | cloning | cloning | stem cells | stem cells | cancer | cancer | immunology | immunology | virology | virology | genomics | genomics | molecular medicine | molecular medicine | DNA | DNA | RNA | RNA | proteins | proteins | replication | replication | transcription | transcription | mRNA | mRNA | translation | translation | ribosome | ribosome | nervous system | nervous system | amino acids | amino acids | polypeptide chain | polypeptide chain | cell biology | cell biology | neurobiology | neurobiology | gene regulation | gene regulation | protein structure | protein structure | protein synthesis | protein synthesis | gene structure | gene structure | PCR | PCR | polymerase chain reaction | polymerase chain reaction | protein localization | protein localization | endoplasmic reticulum | endoplasmic reticulum | ecology | ecology | communities | communities

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.327 Wavelets, Filter Banks and Applications (MIT) 18.327 Wavelets, Filter Banks and Applications (MIT)

Description

Wavelets are localized basis functions, good for representing short-time events. The coefficients at each scale are filtered and subsampled to give coefficients at the next scale. This is Mallat's pyramid algorithm for multiresolution, connecting wavelets to filter banks. Wavelets and multiscale algorithms for compression and signal/image processing are developed. Subject is project-based for engineering and scientific applications. Wavelets are localized basis functions, good for representing short-time events. The coefficients at each scale are filtered and subsampled to give coefficients at the next scale. This is Mallat's pyramid algorithm for multiresolution, connecting wavelets to filter banks. Wavelets and multiscale algorithms for compression and signal/image processing are developed. Subject is project-based for engineering and scientific applications.

Subjects

Discrete-time filters | Discrete-time filters | convolution | convolution | Fourier transform | Fourier transform | owpass and highpass filters | owpass and highpass filters | Sampling rate change operations | Sampling rate change operations | upsampling and downsampling | upsampling and downsampling | ractional sampling | ractional sampling | interpolation | interpolation | Filter Banks | Filter Banks | time domain (Haar example) and frequency domain | time domain (Haar example) and frequency domain | conditions for alias cancellation and no distortion | conditions for alias cancellation and no distortion | perfect reconstruction | perfect reconstruction | halfband filters and possible factorizations | halfband filters and possible factorizations | Modulation and polyphase representations | Modulation and polyphase representations | Noble identities | Noble identities | block Toeplitz matrices and block z-transforms | block Toeplitz matrices and block z-transforms | polyphase examples | polyphase examples | Matlab wavelet toolbox | Matlab wavelet toolbox | Orthogonal filter banks | Orthogonal filter banks | paraunitary matrices | paraunitary matrices | orthogonality condition (Condition O) in the time domain | orthogonality condition (Condition O) in the time domain | modulation domain and polyphase domain | modulation domain and polyphase domain | Maxflat filters | Maxflat filters | Daubechies and Meyer formulas | Daubechies and Meyer formulas | Spectral factorization | Spectral factorization | Multiresolution Analysis (MRA) | Multiresolution Analysis (MRA) | requirements for MRA | requirements for MRA | nested spaces and complementary spaces; scaling functions and wavelets | nested spaces and complementary spaces; scaling functions and wavelets | Refinement equation | Refinement equation | iterative and recursive solution techniques | iterative and recursive solution techniques | infinite product formula | infinite product formula | filter bank approach for computing scaling functions and wavelets | filter bank approach for computing scaling functions and wavelets | Orthogonal wavelet bases | Orthogonal wavelet bases | connection to orthogonal filters | connection to orthogonal filters | orthogonality in the frequency domain | orthogonality in the frequency domain | Biorthogonal wavelet bases | Biorthogonal wavelet bases | Mallat pyramid algorithm | Mallat pyramid algorithm | Accuracy of wavelet approximations (Condition A) | Accuracy of wavelet approximations (Condition A) | vanishing moments | vanishing moments | polynomial cancellation in filter banks | polynomial cancellation in filter banks | Smoothness of wavelet bases | Smoothness of wavelet bases | convergence of the cascade algorithm (Condition E) | convergence of the cascade algorithm (Condition E) | splines | splines | Bases vs. frames | Bases vs. frames | Signal and image processing | Signal and image processing | finite length signals | finite length signals | boundary filters and boundary wavelets | boundary filters and boundary wavelets | wavelet compression algorithms | wavelet compression algorithms | Lifting | Lifting | ladder structure for filter banks | ladder structure for filter banks | factorization of polyphase matrix into lifting steps | factorization of polyphase matrix into lifting steps | lifting form of refinement equationSec | lifting form of refinement equationSec | Wavelets and subdivision | Wavelets and subdivision | nonuniform grids | nonuniform grids | multiresolution for triangular meshes | multiresolution for triangular meshes | representation and compression of surfaces | representation and compression of surfaces | Numerical solution of PDEs | Numerical solution of PDEs | Galerkin approximation | Galerkin approximation | wavelet integrals (projection coefficients | moments and connection coefficients) | wavelet integrals (projection coefficients | moments and connection coefficients) | convergence | convergence | Subdivision wavelets for integral equations | Subdivision wavelets for integral equations | Compression and convergence estimates | Compression and convergence estimates | M-band wavelets | M-band wavelets | DFT filter banks and cosine modulated filter banks | DFT filter banks and cosine modulated filter banks | Multiwavelets | Multiwavelets

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

Geometría Gráfica Informática en Arquitectura I Geometría Gráfica Informática en Arquitectura I

Description

Teoría geométrica del objeto arquitectónico con herramientas informáticas. Esta asignatura se ocupa del estudio de las formas espaciales relacionadas con la arquitectura y de su representación, mediante el uso de los medios informáticos. Puede considerarse, en parte, como una profundización y ampliación de los conocimientos adquiridos por el alumno en Geometría Descriptiva; por otro lado, supone la aplicación, según los medios informáticos, de conceptos referentes a la expresión gráfica aprendidos en otras asignaturas de este mismo Área. Teoría geométrica del objeto arquitectónico con herramientas informáticas. Esta asignatura se ocupa del estudio de las formas espaciales relacionadas con la arquitectura y de su representación, mediante el uso de los medios informáticos. Puede considerarse, en parte, como una profundización y ampliación de los conocimientos adquiridos por el alumno en Geometría Descriptiva; por otro lado, supone la aplicación, según los medios informáticos, de conceptos referentes a la expresión gráfica aprendidos en otras asignaturas de este mismo Área.

Subjects

Bóveda | Bóveda | Expresión Gráfica en la Ingeniería | Expresión Gráfica en la Ingeniería | Módulo | Módulo | 3D network | 3D network | Laboratorios Jorba | Laboratorios Jorba | Modelado | Modelado | Extrusión | Extrusión | Construcciones Arquitectónicas | Construcciones Arquitectónicas | Red plana | Red plana | Mezquita Mihrimah | Mezquita Mihrimah | Orden toscano | Orden toscano | Dome | Dome | Platonic solids | Platonic solids | Dibujo | Dibujo | Booleana | Booleana | Graphic | Graphic | Solid | Solid | Dibujo 3D | Dibujo 3D | Arquitecto | Arquitecto | Architect | Architect | Poliedros semirregulares | Poliedros semirregulares | Hiperboloides | Hiperboloides | Polyhedron | Polyhedron | NURBS | NURBS | Render | Render | Malla | Malla | Computing | Computing | Ermita de la Virgen del Puerto | Ermita de la Virgen del Puerto | Surface | Surface | Particiones | Particiones | Historia del Arte | Historia del Arte | Poliedros regulares | Poliedros regulares | Red 3D | Red 3D | Choisy | Choisy | Axonometric | Axonometric | Network | Network | Pattern | Pattern | Geométrico | Geométrico | Mosque | Mosque | Spatial | Spatial | Sinan | Sinan | Red | Red | 3D | 3D | Form | Form | Perspectiva | Perspectiva | Ordenador | Ordenador | Ismael Garcia Rios | Ismael Garcia Rios | Lacería | Lacería | Paraboloides | Paraboloides | Axonometría | Axonometría | Souto de Moura | Souto de Moura | Revolve | Revolve | Kingo Houses | Kingo Houses | Santa María del Naranco | Santa María del Naranco | Pedro de Ribera | Pedro de Ribera | Regular tessellations | Regular tessellations | Expresión Gráfica Arquitectónica | Expresión Gráfica Arquitectónica | Architecture | Architecture | Molina de Aragón | Molina de Aragón | Tessellations | Tessellations | Ponte de Lima | Ponte de Lima | Arabesco | Arabesco | compactación | compactación | Pantheon | Pantheon | Computer | Computer | Eduardo Torroja | Eduardo Torroja | Fernández del Amo | Fernández del Amo | Ribbed vault | Ribbed vault | Organic architecture | Organic architecture | Superficie cuádrica | Superficie cuádrica | Arquitectura | Arquitectura | Miguel Fisac | Miguel Fisac | Crecimiento orgánico | Crecimiento orgánico | Autocad | Autocad | Symmetrical polyhedra | Symmetrical polyhedra | Rhinoceros | Rhinoceros | Domical vault | Domical vault | Templete de los Evangelistas | Templete de los Evangelistas | Gráfica | Gráfica | Luigi Canina | Luigi Canina | MicroStation | MicroStation | Irregular tessellations | Irregular tessellations | Patio de los Evangelistas | Patio de los Evangelistas | Composición Arquitectónica | Composición Arquitectónica | Sabil | Sabil | Modelling | Modelling | quadric surface | quadric surface | Mesh | Mesh | Panteón | Panteón | Monasterio de El Escorial | Monasterio de El Escorial | Superficie | Superficie | Tunnel vault | Tunnel vault | Vegaviana | Vegaviana | Iglesia Santos Apóstoles | Iglesia Santos Apóstoles | Proyectos Arquitectónicos | Proyectos Arquitectónicos | Parabólicos | Parabólicos | Geometry | Geometry | Carmen Garcia Reig | Carmen Garcia Reig | Expression | Expression | Cuba hiperbólica | Cuba hiperbólica | Red espacial | Red espacial | Geometría | Geometría | skeletal polyhedra | skeletal polyhedra | Bóveda de rincón de claustro | Bóveda de rincón de claustro | Sólido | Sólido | Poliedros platónicos | Poliedros platónicos | Hiperbólicos | Hiperbólicos | Perspective | Perspective | Mimbar | Mimbar | Fedala | Fedala | Furniture | Furniture | Polygon | Polygon | Hyperbolic | Hyperbolic | Bóveda de arista | Bóveda de arista | Revolución | Revolución | Cúpula | Cúpula | Bóveda de cañón | Bóveda de cañón | Estructura | Estructura | Expresión | Expresión | Computer aided design | Computer aided design | Informática | Informática | Hollow faced polyhedra | Hollow faced polyhedra | Flexible | Flexible | Geometric | Geometric | CAD | CAD | Formas | Formas | Bóveda de crucería | Bóveda de crucería | Infografía | Infografía | Polyhedra | Polyhedra | Groin vault | Groin vault | Plane | Plane | Architectural | Architectural | Plano | Plano | Structure | Structure | Architectural drawing | Architectural drawing | Arquitectónica | Arquitectónica | Barrel vault | Barrel vault | Arabesque | Arabesque | Sombra | Sombra | Utzon | Utzon | Escher | Escher | Mueble | Mueble | Vault | Vault | Annular vault | Annular vault | Egipto | Egipto | Polígono | Polígono | Archimedean solids | Archimedean solids | Poliedros arquimedianos | Poliedros arquimedianos | Egypt | Egypt | Paraboloid | Paraboloid | Module | Module | Extrude | Extrude | Boolean | Boolean | Tuscan Order | Tuscan Order | Hyperboloid | Hyperboloid | Poliedros vacuus | Poliedros vacuus

License

Copyright 2009, by the Contributing Authors http://creativecommons.org/licenses/by-nc-sa/3.0/

Site sourced from

http://ocw.upm.es/rss_all

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | dynamics of cellular processes | intracellular scale | extracellular scale | and cell population scale | biotechnology applications | gene regulation networks | nucleic acid hybridization | signal transduction pathways | cell populations in tissues | cell populations in bioreactors | experimental methods | quantitative analysis | computational modeling | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-alllifesciencescourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Biomolecular Kinetics and Cell Dynamics (MIT)

Description

This class covers analysis of kinetics and dynamics of molecular and cellular processes across a hierarchy of scales, including intracellular, extracellular, and cell population levels; a spectrum of biotechnology applications are also taken into consideration. Topics include gene regulation networks; nucleic acid hybridization; signal transduction pathways; and cell populations in tissues and bioreactors. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

kinetics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | dynamics of cellular processes | intracellular scale | extracellular scale | and cell population scale | biotechnology applications | gene regulation networks | nucleic acid hybridization | signal transduction pathways | cell populations in tissues | cell populations in bioreactors | experimental methods | quantitative analysis | computational modeling | cell population scale

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.342 Systems and Synthetic Biology: How the Cell Solves Problems (MIT) 7.342 Systems and Synthetic Biology: How the Cell Solves Problems (MIT)

Description

A millennial challenge in biology is to decipher how vast arrays of molecular interactions inside the cell work in concert to produce a cellular function. Systems biology, a new interdisciplinary field of science, brings together biologists and physicists to tackle this grand challenge through quantitative experiments and models. In this course, we will discuss the unifying principles that all organisms use to perform cellular functions. We will also discuss key challenges faced by a cell in both single and multi-cellular organisms. Finally, we will discuss how researchers in the field of synthetic biology are using the new knowledge gained from studying naturally-occurring biological systems to create artificial gene networks capable of performing new functions. This course is one of many A millennial challenge in biology is to decipher how vast arrays of molecular interactions inside the cell work in concert to produce a cellular function. Systems biology, a new interdisciplinary field of science, brings together biologists and physicists to tackle this grand challenge through quantitative experiments and models. In this course, we will discuss the unifying principles that all organisms use to perform cellular functions. We will also discuss key challenges faced by a cell in both single and multi-cellular organisms. Finally, we will discuss how researchers in the field of synthetic biology are using the new knowledge gained from studying naturally-occurring biological systems to create artificial gene networks capable of performing new functions. This course is one of many

Subjects

systems biology | systems biology | synthetic biology | synthetic biology | cell | cell | cellular functions | cellular functions | biological systems | biological systems | artificial gene networks | artificial gene networks | molecular interactions | molecular interactions | molecular biology | molecular biology | genes | genes | RNA | RNA | proteins | proteins | macromolecules | macromolecules | intracellular biochemical interactions | intracellular biochemical interactions | extracellular molecules | extracellular molecules | gene expression | gene expression | stochastic gene expression | stochastic gene expression

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.305 Advanced Analytic Methods in Science and Engineering (MIT) 18.305 Advanced Analytic Methods in Science and Engineering (MIT)

Description

Advanced Analytic Methods in Science and Engineering is a comprehensive treatment of the advanced methods of applied mathematics. It was designed to strengthen the mathematical abilities of graduate students and train them to think on their own. Advanced Analytic Methods in Science and Engineering is a comprehensive treatment of the advanced methods of applied mathematics. It was designed to strengthen the mathematical abilities of graduate students and train them to think on their own.

Subjects

elementary methods complex analysis | elementary methods complex analysis | ordinary differential equations | ordinary differential equations | partial differential equations | partial differential equations | expansions around regular irregular singular points | expansions around regular irregular singular points | asymptotic evaluation integrals | asymptotic evaluation integrals | regular perturbations | regular perturbations | WKB method | WKB method | multiple scale method | multiple scale method | boundary-layer techniques. | boundary-layer techniques. | asymptotic evaluation integrals | regular perturbations | asymptotic evaluation integrals | regular perturbations | boundary-layer techniques | boundary-layer techniques

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

HST.525J Tumor Pathophysiology and Transport Phenomena (MIT) HST.525J Tumor Pathophysiology and Transport Phenomena (MIT)

Description

Tumor pathophysiology plays a central role in the growth, invasion, metastasis and treatment of solid tumors. This class applies principles of transport phenomena to develop a systems-level, quantitative understanding of angiogenesis, blood flow and microcirculation, metabolism and microenvironment, transport and binding of small and large molecules, movement of cancer and immune cells, metastatic process, and treatment response. Additional Faculty Dr. Pat D'Amore Dr. Dan Duda Dr. Robert Langer Prof. Robert Weinberg Dr. Marsha Moses Dr. Raghu Kalluri Dr. Lance Munn Tumor pathophysiology plays a central role in the growth, invasion, metastasis and treatment of solid tumors. This class applies principles of transport phenomena to develop a systems-level, quantitative understanding of angiogenesis, blood flow and microcirculation, metabolism and microenvironment, transport and binding of small and large molecules, movement of cancer and immune cells, metastatic process, and treatment response. Additional Faculty Dr. Pat D'Amore Dr. Dan Duda Dr. Robert Langer Prof. Robert Weinberg Dr. Marsha Moses Dr. Raghu Kalluri Dr. Lance Munn

Subjects

HST.525 | HST.525 | 10.548 | 10.548 | tumor | tumor | cancer | cancer | tumor vasculature | tumor vasculature | antiangiogenesis | antiangiogenesis | bone marrow-derived stem cells | bone marrow-derived stem cells | BMDC | BMDC | stem cell research | stem cell research | experimental cancer therapy | experimental cancer therapy | cancer research | cancer research | tumor-host interactions | tumor-host interactions | vascular normalization | vascular normalization | vascular transport | vascular transport | interstitial transport | interstitial transport | lymphatic transport | lymphatic transport | microcirculation | microcirculation | molecular therapeutics | molecular therapeutics | blood vessels | blood vessels | angiogenesis | angiogenesis | drug delivery | drug delivery | intravital microscopy | intravital microscopy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-HST.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

20.320 Analysis of Biomolecular and Cellular Systems (MIT)

Description

This course focuses on computational and experimental analysis of biological systems across a hierarchy of scales, including genetic, molecular, cellular, and cell population levels. The two central themes of the course are modeling of complex dynamic systems and protein design and engineering. Topics include gene sequence analysis, molecular modeling, metabolic and gene regulation networks, signal transduction pathways and cell populations in tissues. Emphasis is placed on experimental methods, quantitative analysis, and computational modeling.

Subjects

biological engineering | kinase | PyMOL | PyRosetta | MATLAB | Michaelis-Menten | bioreactor | bromodomain | protein-ligand interactions | titration analysis | fractional separation | isothermal titration calorimetry | ITC | mass spectrometry | MS | co-immunoprecipitation | Co-IP | Forster resonance energy transfer | FRET | primary ligation assay | PLA | surface plasmon resonance | SPR | enzyme kinetics | kinase engineering | competitive inhibition | epidermal growth factor receptor | mitogen-activated protein kinase | MAPK | genome editing | Imatinib | Gleevec | Glivec | drug delivery | kinetics of molecular processes | dynamics of molecular processes | kinetics of cellular processes | dynamics of cellular processes | intracellular scale | extracellular scale | and cell population scale | biotechnology applications | gene regulation networks | nucleic acid hybridization | signal transduction pathways | cell populations in tissues | cell populations in bioreactors | experimental methods | quantitative analysis | computational modeling

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htm

Site sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

22.106 Neutron Interactions and Applications (MIT) 22.106 Neutron Interactions and Applications (MIT)

Description

This course is a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas. This course is a foundational study of the effects of single and multiple interactions on neutron distributions and their applications to problems across the Nuclear Engineering department - fission, fusion, and RST. Particle simulation methods are introduced to deal with complex processes that cannot be studied only experimentally or by numerical solutions of equations. Treatment will emphasize basic concepts and understanding, as well as showing the underlying scientific connections with current research areas.

Subjects

Neutron Interaction | Neutron Interaction | Neutron Elastic Scattering: Thermal Motion | Neutron Elastic Scattering: Thermal Motion | Chemical Binding Effects | Chemical Binding Effects | Particle Simulations I | Particle Simulations I | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | Monte Carlo Basics Monte Carlo in Statistical Physics and Radiation Transport | The Neutron Transport Equation | The Neutron Transport Equation | Neutron Slowing Down | Neutron Slowing Down | Neutron Diffusion | Neutron Diffusion | Particle Simulation Methods | Particle Simulation Methods | Basic Molecular Dynamics | Basic Molecular Dynamics | Direct Simulation of Melting | Direct Simulation of Melting | Multiscale Materials Modeling | Multiscale Materials Modeling | Thermal Neutron Scattering | Thermal Neutron Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering | Dynamic Structure Factor in Neutron Inelastic Scattering

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.888 Multidisciplinary System Design Optimization (MIT) 16.888 Multidisciplinary System Design Optimization (MIT)

Description

This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers. This course is mainly focused on the quantitative aspects of design and presents a unifying framework called "Multidisciplinary System Design Optimization" (MSDO). The objective of the course is to present tools and methodologies for performing system optimization in a multidisciplinary design context, focusing on three aspects of the problem: (i) The multidisciplinary character of engineering systems, (ii) design of these complex systems, and (iii) tools for optimization. There is a version of this course (16.60s) offered through the MIT Professional Institute, targeted at professional engineers.

Subjects

optimization | optimization | multidisciplinary design optimization | multidisciplinary design optimization | MDO | MDO | subsystem identification | subsystem identification | interface design | interface design | linear constrained optimization fomulation | linear constrained optimization fomulation | non-linear constrained optimization formulation | non-linear constrained optimization formulation | scalar optimization | scalar optimization | vector optimization | vector optimization | systems engineering | systems engineering | complex systems | complex systems | heuristic search methods | heuristic search methods | tabu search | tabu search | simulated annealing | simulated annealing | genertic algorithms | genertic algorithms | sensitivity | sensitivity | tradeoff analysis | tradeoff analysis | goal programming | goal programming | isoperformance | isoperformance | pareto optimality | pareto optimality | flowchart | flowchart | design vector | design vector | simulation model | simulation model | objective vector | objective vector | input | input | discipline | discipline | output | output | coupling | coupling | multiobjective optimization | multiobjective optimization | optimization algorithms | optimization algorithms | tradespace exploration | tradespace exploration | numerical techniques | numerical techniques | direct methods | direct methods | penalty methods | penalty methods | heuristic techniques | heuristic techniques | SA | SA | GA | GA | approximation methods | approximation methods | sensitivity analysis | sensitivity analysis | isoperformace | isoperformace | output evaluation | output evaluation | MSDO framework | MSDO framework

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis Introduction to Astronomy provides a quantitative introduction to physics of the solar system, stars, interstellar medium, the galaxy, and universe, as determined from a variety of astronomical observations and models.Topics include: planets, planet formation; stars, the Sun, "normal" stars, star formation; stellar evolution, supernovae, compact objects (white dwarfs, neutron stars, and black holes), plusars, binary X-ray sources; star clusters, globular and open clusters; interstellar medium, gas, dust, magnetic fields, cosmic rays; distance ladder; galaxies, normal and active galaxies, jets; gravitational lensing; large scaling structure; Newtonian cosmology, dynamical expansion and thermal history of the Universe; cosmic microwave background radiation; big-bang nucleosynthesis

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.320 Atomistic Computer Modeling of Materials (SMA 5107) (MIT) 3.320 Atomistic Computer Modeling of Materials (SMA 5107) (MIT)

Description

This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure app This course uses the theory and application of atomistic computer simulations to model, understand, and predict the properties of real materials. Specific topics include: energy models from classical potentials to first-principles approaches; density functional theory and the total-energy pseudopotential method; errors and accuracy of quantitative predictions: thermodynamic ensembles, Monte Carlo sampling and molecular dynamics simulations; free energy and phase transitions; fluctuations and transport properties; and coarse-graining approaches and mesoscale models. The course employs case studies from industrial applications of advanced materials to nanotechnology. Several laboratories will give students direct experience with simulations of classical force fields, electronic-structure app

Subjects

simulation | simulation | computer simulation | computer simulation | atomistic computer simulations | atomistic computer simulations | Density-functional theory | Density-functional theory | DFT | DFT | Hartree-Fock | Hartree-Fock | total-energy pseudopotential | total-energy pseudopotential | thermodynamics | thermodynamics | thermodynamic ensembles | thermodynamic ensembles | quantum mechanics | quantum mechanics | first-principles | first-principles | Monte Carlo sampling | Monte Carlo sampling | molecular dynamics | molecular dynamics | finite temperature | finite temperature | Free energies | Free energies | phase transitions | phase transitions | Coarse-graining | Coarse-graining | mesoscale model | mesoscale model | nanotube | nanotube | alloy | alloy

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

1.223J Transportation Policy, Strategy, and Management (MIT) 1.223J Transportation Policy, Strategy, and Management (MIT)

Description

This class surveys the current concepts, theories, and issues in strategic management of transportation organizations. It provides transportation logistics and engineering systems students with an overview of the operating context, leadership challenges, strategies, and management tools that are used in today's public and private transportation organizations. The following concepts, tools, and issues are presented in both public and private sector cases: alternative models of decision-making, strategic planning (e.g., use of SWOT analysis and scenario development), stakeholder valuation and analysis, government-based regulation and cooperation within the transportation enterprise, disaster communications, systems safety, change management, and the impact of globalization. This class surveys the current concepts, theories, and issues in strategic management of transportation organizations. It provides transportation logistics and engineering systems students with an overview of the operating context, leadership challenges, strategies, and management tools that are used in today's public and private transportation organizations. The following concepts, tools, and issues are presented in both public and private sector cases: alternative models of decision-making, strategic planning (e.g., use of SWOT analysis and scenario development), stakeholder valuation and analysis, government-based regulation and cooperation within the transportation enterprise, disaster communications, systems safety, change management, and the impact of globalization.

Subjects

public transportation systems; pollution; infrastructure; government regulation; public policy; strategic planning management; labor relations; maintenance planning; administration; financing; marketing policy; fare policy; management information; decision support systems; transit industry; service provision; private sector; alternative models of decision-making; strategic planning; stakeholder valuation and analysis; government-based regulation and cooperation; transportation enterprise; disaster communications; systems safety; change management; and the impact of globalization; | public transportation systems; pollution; infrastructure; government regulation; public policy; strategic planning management; labor relations; maintenance planning; administration; financing; marketing policy; fare policy; management information; decision support systems; transit industry; service provision; private sector; alternative models of decision-making; strategic planning; stakeholder valuation and analysis; government-based regulation and cooperation; transportation enterprise; disaster communications; systems safety; change management; and the impact of globalization; | public transportation systems | public transportation systems | pollution | pollution | infrastructure | infrastructure | government regulation | government regulation | public policy | public policy | strategic planning management | strategic planning management | labor relations | labor relations | maintenance planning | maintenance planning | administration | administration | financing | financing | marketing policy | marketing policy | fare policy | fare policy | management information | management information | decision support systems | decision support systems | transit industry | transit industry | service provision | service provision | private sector | private sector | alternative models of decision-making | alternative models of decision-making | strategic planning | strategic planning | stakeholder valuation and analysis | stakeholder valuation and analysis | government-based regulation and cooperation | government-based regulation and cooperation | transportation enterprise | transportation enterprise | disaster communications | disaster communications | systems safety | systems safety | change management | change management | and the impact of globalization | and the impact of globalization | the impact of globalization | the impact of globalization | 1.223 | 1.223 | ESD.203 | ESD.203

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

2.797J Molecular, Cellular, and Tissue Biomechanics (MIT) 2.797J Molecular, Cellular, and Tissue Biomechanics (MIT)

Description

This course develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. The class also examines experimental methods for probing structures at the tissue, cellular, and molecular levels. This course develops and applies scaling laws and the methods of continuum mechanics to biomechanical phenomena over a range of length scales. Topics include structure of tissues and the molecular basis for macroscopic properties; chemical and electrical effects on mechanical behavior; cell mechanics, motility and adhesion; biomembranes; biomolecular mechanics and molecular motors. The class also examines experimental methods for probing structures at the tissue, cellular, and molecular levels.

Subjects

molecular mechanics | molecular mechanics | tissue mechanics | tissue mechanics | cell mechanics | cell mechanics | molecular electromechanics | molecular electromechanics | electromechanical and physiochemical properties of tissues | electromechanical and physiochemical properties of tissues | physical regulation | physical regulation | cellular metabolism | cellular metabolism | tissue-level deformation | tissue-level deformation | muscle constriction | muscle constriction

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

3.012 Fundamentals of Materials Science (MIT) 3.012 Fundamentals of Materials Science (MIT)

Description

This course focuses on the fundamentals of structure, energetics, and bonding that underpin materials science. It is the introductory lecture class for sophomore students in Materials Science and Engineering, taken with 3.014 and 3.016 to create a unified introduction to the subject. Topics include: an introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to atomistic and molecular models of materials; the role of electronic bonding in determining the energy, structure, and stability of materials; quantum mechanical descriptions of interacting electrons and atoms; materials phenomena, such as heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism; symmetry properties of molecules and s This course focuses on the fundamentals of structure, energetics, and bonding that underpin materials science. It is the introductory lecture class for sophomore students in Materials Science and Engineering, taken with 3.014 and 3.016 to create a unified introduction to the subject. Topics include: an introduction to thermodynamic functions and laws governing equilibrium properties, relating macroscopic behavior to atomistic and molecular models of materials; the role of electronic bonding in determining the energy, structure, and stability of materials; quantum mechanical descriptions of interacting electrons and atoms; materials phenomena, such as heat capacities, phase transformations, and multiphase equilibria to chemical reactions and magnetism; symmetry properties of molecules and s

Subjects

bonding | bonding | energetics | energetics | structure | structure | antibonding | antibonding | hydrogen | hydrogen | Quantum mechanics | Quantum mechanics | electron | electron | atom | atom | molecule | molecule | molecular dynamics | molecular dynamics | MD | MD | Symmetry properties | Symmetry properties | solid | solid | gas | gas | liquid | liquid | phase | phase | matter; molecular geometry | matter; molecular geometry | complex and disordered materials | complex and disordered materials | thermodynamics | thermodynamics | equilibrium property | equilibrium property | macroscopic behavior | macroscopic behavior | molecular model | molecular model | heat capacity | heat capacity | phase transformation | phase transformation | multiphase equilibria | multiphase equilibria | chemical reaction | chemical reaction | magnetism | magnetism | engineered alloy | engineered alloy | electronic and magnetic material | electronic and magnetic material | ionic solid | ionic solid | network solid | network solid | polymer | polymer | biomaterial | biomaterial | glass | glass | liquid crystal | liquid crystal | LCD | LCD | matter | matter | molecular geometry | molecular geometry

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-3.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

7.27 Principles of Human Disease (MIT) 7.27 Principles of Human Disease (MIT)

Description

This course covers current understanding of, and modern approaches to human disease, emphasizing the molecular and cellular basis of both genetic disease and cancer. Topics include: The Genetics of Simple and Complex Traits; Karyotypic Analysis and Positional Cloning; Genetic Diagnosis; The Roles of Oncogenes and Tumor Suppressors in Tumor Initiation, Progression, and Treatment; The Interaction between Genetics and Environment; Animal Models of Human Disease; Cancer; and Conventional and Gene Therapy Treatment Strategies. This course covers current understanding of, and modern approaches to human disease, emphasizing the molecular and cellular basis of both genetic disease and cancer. Topics include: The Genetics of Simple and Complex Traits; Karyotypic Analysis and Positional Cloning; Genetic Diagnosis; The Roles of Oncogenes and Tumor Suppressors in Tumor Initiation, Progression, and Treatment; The Interaction between Genetics and Environment; Animal Models of Human Disease; Cancer; and Conventional and Gene Therapy Treatment Strategies.

Subjects

human disease | human disease | molecular basis of genetic disease | molecular basis of genetic disease | molecular basis of cancer | molecular basis of cancer | cellular basis of genetic disease | cellular basis of genetic disease | cellular basis of cancer | cellular basis of cancer | genetics of simple and complex traits | genetics of simple and complex traits | karyotypic analysis | karyotypic analysis | positional cloning | positional cloning | genetic diagnosis | genetic diagnosis | roles of oncogenes | roles of oncogenes | tumor suppressors | tumor suppressors | tumor initiation | tumor initiation | tumor progression | tumor progression | tumor treatment | tumor treatment | interaction between genetics and environment | interaction between genetics and environment | animal models of human disease | animal models of human disease | cancer | cancer | conventional treatment strategies | conventional treatment strategies | gene therapy treatment strategies | gene therapy treatment strategies

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-7.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

8.282J Introduction to Astronomy (MIT) 8.282J Introduction to Astronomy (MIT)

Description

Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models. Introduction to Astronomy provides a quantitative introduction to the physics of the solar system, stars, the interstellar medium, the galaxy, and the universe, as determined from a variety of astronomical observations and models.

Subjects

solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system; stars; interstellar medium; the Galaxy; the Universe; planets; planet formation; star formation; stellar evolution; supernovae; compact objects; white dwarfs; neutron stars; black holes; plusars | binary X-ray sources; star clusters; globular and open clusters; interstellar medium | gas | dust | magnetic fields | cosmic rays; distance ladder; | solar system | solar system | stars | stars | interstellar medium | interstellar medium | the Galaxy | the Galaxy | the Universe | the Universe | planets | planets | planet formation | planet formation | star formation | star formation | stellar evolution | stellar evolution | supernovae | supernovae | compact objects | compact objects | white dwarfs | white dwarfs | neutron stars | neutron stars | black holes | black holes | plusars | binary X-ray sources | plusars | binary X-ray sources | star clusters | star clusters | globular and open clusters | globular and open clusters | interstellar medium | gas | dust | magnetic fields | cosmic rays | interstellar medium | gas | dust | magnetic fields | cosmic rays | distance ladder | distance ladder | galaxies | normal and active galaxies | jets | galaxies | normal and active galaxies | jets | gravitational lensing | gravitational lensing | large scaling structure | large scaling structure | Newtonian cosmology | dynamical expansion and thermal history of the Universe | Newtonian cosmology | dynamical expansion and thermal history of the Universe | cosmic microwave background radiation | cosmic microwave background radiation | big-bang nucleosynthesis | big-bang nucleosynthesis | pulsars | pulsars | binary X-ray sources | binary X-ray sources | gas | gas | dust | dust | magnetic fields | magnetic fields | cosmic rays | cosmic rays | galaxy | galaxy | universe | universe | astrophysics | astrophysics | Sun | Sun | supernova | supernova | globular clusters | globular clusters | open clusters | open clusters | jets | jets | Newtonian cosmology | Newtonian cosmology | dynamical expansion | dynamical expansion | thermal history | thermal history | normal galaxies | normal galaxies | active galaxies | active galaxies | Greek astronomy | Greek astronomy | physics | physics | Copernicus | Copernicus | Tycho | Tycho | Kepler | Kepler | Galileo | Galileo | classical mechanics | classical mechanics | circular orbits | circular orbits | full kepler orbit problem | full kepler orbit problem | electromagnetic radiation | electromagnetic radiation | matter | matter | telescopes | telescopes | detectors | detectors | 8.282 | 8.282 | 12.402 | 12.402 | plusars | plusars | galaxies | galaxies | normal and active galaxies | normal and active galaxies | dynamical expansion and thermal history of the Universe | dynamical expansion and thermal history of the Universe

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

12.307 Weather and Climate Laboratory (MIT) 12.307 Weather and Climate Laboratory (MIT)

Description

Course 12.307 is an undergraduate course intended to illustrate, by means of 'hands on' projects, the basic dynamical and physical principles that govern the general circulation of the atmosphere and ocean and the day to day sequence of weather events.  The course parallels the content of the new undergraduate textbook Atmosphere, Ocean and Climate Dynamics by John Marshall and R. Alan Plumb. Course 12.307 is an undergraduate course intended to illustrate, by means of 'hands on' projects, the basic dynamical and physical principles that govern the general circulation of the atmosphere and ocean and the day to day sequence of weather events.  The course parallels the content of the new undergraduate textbook Atmosphere, Ocean and Climate Dynamics by John Marshall and R. Alan Plumb.

Subjects

Rotation stiffens fluids | Rotation stiffens fluids | Convection | Convection | Radial inflow | Radial inflow | Parabolic table | Parabolic table | inertial Circles | inertial Circles | Taylor Columns | Taylor Columns | Thermal Wind and Hadley Circulation | Thermal Wind and Hadley Circulation | Slope of a frontal surface | Slope of a frontal surface | Ekman layers | Ekman layers | Perrot's bathtub experiment | Perrot's bathtub experiment | Atmospheric General circulation | Atmospheric General circulation | Stress-driven circulation and Ekman layers | Stress-driven circulation and Ekman layers | Ocean gyres | Ocean gyres | Thermohaline Circulation | Thermohaline Circulation | Geostrophic/Ageostrophic Flow | Geostrophic/Ageostrophic Flow | Mass and Wind | Mass and Wind | Hydrostatic balance | Hydrostatic balance | Baroclinic instability | Baroclinic instability | Hurricane Gustav | Hurricane Gustav

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

16.225 Computational Mechanics of Materials (MIT) 16.225 Computational Mechanics of Materials (MIT)

Description

16.225 is a graduate level course on Computational Mechanics of Materials. The primary focus of this course is on the teaching of state-of-the-art numerical methods for the analysis of the nonlinear continuum response of materials. The range of material behavior considered in this course includes: linear and finite deformation elasticity, inelasticity and dynamics. Numerical formulation and algorithms include: variational formulation and variational constitutive updates, finite element discretization, error estimation, constrained problems, time integration algorithms and convergence analysis. There is a strong emphasis on the (parallel) computer implementation of algorithms in programming assignments. The application to real engineering applications and problems in engineering science is 16.225 is a graduate level course on Computational Mechanics of Materials. The primary focus of this course is on the teaching of state-of-the-art numerical methods for the analysis of the nonlinear continuum response of materials. The range of material behavior considered in this course includes: linear and finite deformation elasticity, inelasticity and dynamics. Numerical formulation and algorithms include: variational formulation and variational constitutive updates, finite element discretization, error estimation, constrained problems, time integration algorithms and convergence analysis. There is a strong emphasis on the (parallel) computer implementation of algorithms in programming assignments. The application to real engineering applications and problems in engineering science is

Subjects

Computational Mechanics | Computational Mechanics | Computation | Computation | Mechanics | Mechanics | Materials | Materials | Numerical Methods | Numerical Methods | Numerical | Numerical | Nonlinear Continuum Response | Nonlinear Continuum Response | Continuum | Continuum | Deformation | Deformation | Elasticity | Elasticity | Inelasticity | Inelasticity | Dynamics | Dynamics | Variational Formulation | Variational Formulation | Variational Constitutive Updates | Variational Constitutive Updates | Finite Element | Finite Element | Discretization | Discretization | Error Estimation | Error Estimation | Constrained Problems | Constrained Problems | Time Integration | Time Integration | Convergence Analysis | Convergence Analysis | Programming | Programming | Continuum Response | Continuum Response | Computational | Computational | state-of-the-art | state-of-the-art | methods | methods | modeling | modeling | simulation | simulation | mechanical | mechanical | response | response | engineering | engineering | aerospace | aerospace | civil | civil | material | material | science | science | biomechanics | biomechanics | behavior | behavior | finite | finite | deformation | deformation | elasticity | elasticity | inelasticity | inelasticity | contact | contact | friction | friction | coupled | coupled | numerical | numerical | formulation | formulation | algorithms | algorithms | Variational | Variational | constitutive | constitutive | updates | updates | element | element | discretization | discretization | mesh | mesh | generation | generation | error | error | estimation | estimation | constrained | constrained | problems | problems | time | time | convergence | convergence | analysis | analysis | parallel | parallel | computer | computer | implementation | implementation | programming | programming | assembly | assembly | equation-solving | equation-solving | formulating | formulating | implementing | implementing | complex | complex | approximations | approximations | equations | equations | motion | motion | dynamic | dynamic | deformations | deformations | continua | continua | plasticity | plasticity | rate-dependency | rate-dependency | integration | integration

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata

18.338J Infinite Random Matrix Theory (MIT) 18.338J Infinite Random Matrix Theory (MIT)

Description

In this course on the mathematics of infinite random matrices, students will learn about the tools such as the Stieltjes transform and Free Probability used to characterize infinite random matrices. In this course on the mathematics of infinite random matrices, students will learn about the tools such as the Stieltjes transform and Free Probability used to characterize infinite random matrices.

Subjects

Infinite Random Matrices | Infinite Random Matrices | The Hermite Ensemble | The Hermite Ensemble | Wigner's Semi-Circle Law; | Wigner's Semi-Circle Law; | The Laguerre Ensemble | The Laguerre Ensemble | Marcenko-Pastur Theorem | Marcenko-Pastur Theorem | The Jacobi Ensemble | The Jacobi Ensemble | McKay's Random Graph Theorem | McKay's Random Graph Theorem | The ?Semi-Circular? Element | The ?Semi-Circular? Element | Central Limit Theorem | Central Limit Theorem | Free Cumulants in Free Probability | Free Cumulants in Free Probability | Non-Crossing Partitionsm | Non-Crossing Partitionsm | Free Cumulants | Free Cumulants | The Semi-Circular and ?Free Poisson? distributions | The Semi-Circular and ?Free Poisson? distributions | Additive Free Convolution | Additive Free Convolution | The R-Transform and the Marcenko-Pastur Theorem | The R-Transform and the Marcenko-Pastur Theorem | Multiplicative Free Convolution | Multiplicative Free Convolution | The S-Transform | The S-Transform | Non-Crossing Partitions | Non-Crossing Partitions | Orthogonal Polynomials and the Classical Matrix Ensembles | Orthogonal Polynomials and the Classical Matrix Ensembles | Tracy Widom Distribution | Tracy Widom Distribution | Eigenvalue Spectrum Fluctuations | Eigenvalue Spectrum Fluctuations | Free Probability and Fluctuations | Free Probability and Fluctuations | Zonal Polynomials and Random Matrices | Zonal Polynomials and Random Matrices | Symmetric Group Representations and Free Probability | Symmetric Group Representations and Free Probability | 18.338 | 18.338 | 16.394 | 16.394 | Wigner's Semi-Circle Law | Wigner's Semi-Circle Law

License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htm

Site sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xml

Attribution

Click to get HTML | Click to get attribution | Click to get URL

All metadata

See all metadata