Searching for vibrations : 39 results found | RSS Feed for this search

8.03 Physics III (MIT) 8.03 Physics III (MIT)

Description

Mechanical vibrations and waves, simple harmonic motion, superposition, forced vibrations and resonance, coupled oscillations and normal modes, vibrations of continuous systems, reflection and refraction, phase and group velocity. Optics, wave solutions to Maxwell's equations, polarization, Snell's law, interference, Huygens's principle, Fraunhofer diffraction, and gratings. Mechanical vibrations and waves, simple harmonic motion, superposition, forced vibrations and resonance, coupled oscillations and normal modes, vibrations of continuous systems, reflection and refraction, phase and group velocity. Optics, wave solutions to Maxwell's equations, polarization, Snell's law, interference, Huygens's principle, Fraunhofer diffraction, and gratings.Subjects

Mechanical vibrations and waves | Mechanical vibrations and waves | simple harmonic motion | simple harmonic motion | superposition | superposition | forced vibrations and resonance | forced vibrations and resonance | coupled oscillations and normal modes | coupled oscillations and normal modes | vibrations of continuous systems | vibrations of continuous systems | reflection and refraction | reflection and refraction | phase and group velocity | phase and group velocity | wave solutions to Maxwell's equations | wave solutions to Maxwell's equations | polarization | polarization | Snell's Law | Snell's Law | interference | interference | Huygens's principle | Huygens's principle | Fraunhofer diffraction | Fraunhofer diffraction | gratings | gratingsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.03SC Physics III: Vibrations and Waves (MIT)

Description

This is the third course in the core physics curriculum at MIT, following 8.01 Physics I: Classical Mechanics and 8.02 Physics II: Electricity and Magnetism. Topics include mechanical vibrations and waves, electromagnetic waves, and optics. Students will learn about musical instruments, red sunsets, glories, coronae, rainbows, haloes, X-ray binaries, neutron stars, black holes and Big Bang cosmology.Subjects

mechanical vibrations | waves | simple harmonic motion | superposition | forced vibrations | resonance | coupled oscillations | normal modes | vibrations of continuous systems | reflection | refraction | phase | group velocity | Optics | wave solutions to Maxwell's equations | polarization | Snell's Law | interference | Huygens's principle | Fraunhofer diffraction | gratings | musical instruments | red sunsets | glories | coronae | rainbows | haloes | X-ray binaries | neutron stars | black holes | big-bang cosmologyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allocwscholarcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.03 Physics III: Vibrations and Waves (MIT)

Description

In addition to the traditional topics of mechanical vibrations and waves, coupled oscillators, and electro-magnetic radiation, students will also learn about musical instruments, red sunsets, glories, coronae, rainbows, haloes, X-ray binaries, neutron stars, black holes and big-bang cosmology. OpenCourseWare presents another version of 8.03 that features a full set of lecture notes and take-home experiments. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Electricity and Magnetism (8.02)- with a complete set of 36 video lectures from the Spring of 2002 Talks: For The Love Of Physics - Professor of Physics Emeritus Walter Lewin's last MIT lecture, complete with some of his most famous phySubjects

mechanical vibrations | waves | simple harmonic motion | superposition | forced vibrations | resonance | coupled oscillations | normal modes | vibrations of continuous systems | reflection | refraction | phase | group velocity | Optics | wave solutions to Maxwell's equations | polarization | Snell's Law | interference | Huygens's principle | Fraunhofer diffraction | gratings | musical instruments | red sunsets | glories | coronae | rainbows | haloes | X-ray binaries | neutron stars | black holes | big-bang cosmologyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.03 Physics III: Vibrations and Waves (MIT)

Description

In addition to the traditional topics of mechanical vibrations and waves, coupled oscillators, and electro-magnetic radiation, students will also learn about musical instruments, red sunsets, glories, coronae, rainbows, haloes, X-ray binaries, neutron stars, black holes and big-bang cosmology. OpenCourseWare presents another version of 8.03 that features a full set of lecture notes and take-home experiments. Also by Walter Lewin Courses: Classical Mechanics (8.01)- with a complete set of 35 video lectures from the Fall of 1999 Electricity and Magnetism (8.02)- with a complete set of 36 video lectures from the Spring of 2002 Talks: For The Love Of Physics - Professor of Physics Emeritus Walter Lewin's last MIT lecture, complete with some of his most famous phySubjects

mechanical vibrations | waves | simple harmonic motion | superposition | forced vibrations | resonance | coupled oscillations | normal modes | vibrations of continuous systems | reflection | refraction | phase | group velocity | Optics | wave solutions to Maxwell's equations | polarization | Snell's Law | interference | Huygens's principle | Fraunhofer diffraction | gratings | musical instruments | red sunsets | glories | coronae | rainbows | haloes | X-ray binaries | neutron stars | black holes | big-bang cosmologyLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Mechanical vibrations and waves, simple harmonic motion, superposition, forced vibrations and resonance, coupled oscillations and normal modes, vibrations of continuous systems, reflection and refraction, phase and group velocity. Optics, wave solutions to Maxwell's equations, polarization, Snell's law, interference, Huygens's principle, Fraunhofer diffraction, and gratings.Subjects

Mechanical vibrations and waves | simple harmonic motion | superposition | forced vibrations and resonance | coupled oscillations and normal modes | vibrations of continuous systems | reflection and refraction | phase and group velocity | wave solutions to Maxwell's equations | polarization | Snell's Law | interference | Huygens's principle | Fraunhofer diffraction | gratingsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Mechanical vibrations and waves, simple harmonic motion, superposition, forced vibrations and resonance, coupled oscillations and normal modes, vibrations of continuous systems, reflection and refraction, phase and group velocity. Optics, wave solutions to Maxwell's equations, polarization, Snell's law, interference, Huygens's principle, Fraunhofer diffraction, and gratings.Subjects

Mechanical vibrations and waves | simple harmonic motion | superposition | forced vibrations and resonance | coupled oscillations and normal modes | vibrations of continuous systems | reflection and refraction | phase and group velocity | wave solutions to Maxwell's equations | polarization | Snell's Law | interference | Huygens's principle | Fraunhofer diffraction | gratingsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

The goal of this course is to illustrate how molecular structure is extracted from a spectrum. In order to achieve this goal it will be necessary to: master the language of spectroscopists; develop facility with quantum mechanical models; predict the relative intensities and selection rules; and learn how to assign spectra. The goal of this course is to illustrate how molecular structure is extracted from a spectrum. In order to achieve this goal it will be necessary to: master the language of spectroscopists; develop facility with quantum mechanical models; predict the relative intensities and selection rules; and learn how to assign spectra.Subjects

Chemistry | Chemistry | molecular spectra | molecular spectra | molecular structure | molecular structure | spectroscopists | spectroscopists | quantum mechanical models | quantum mechanical models | intensities | intensities | selection rules | selection rules | energy levels | energy levels | vibrations | vibrationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles. Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles.Subjects

Thermodynamics | Thermodynamics | entropy. mehanics | entropy. mehanics | microcanonical distributions | microcanonical distributions | canonical distributions | canonical distributions | grand canonical distributions; lattice vibrations | grand canonical distributions; lattice vibrations | ideal gas | ideal gas | photon gas. | photon gas. | quantum statistical mechanics; Fermi systems | quantum statistical mechanics; Fermi systems | Bose systems | Bose systems | cluster expansions | cluster expansions | van der Waal's gas | van der Waal's gas | mean-field theory. | mean-field theory.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.333 Statistical Mechanics (MIT) 8.333 Statistical Mechanics (MIT)

Description

8.333 is the first course in a two-semester sequence on statistical mechanics. Basic principles are examined in 8.333: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, micro canonical, canonical, and grand canonical distributions; applications to lattice vibrations, ideal gas, photon gas. Quantum statistical mechanics; Fermi and Bose systems. Interacting systems: cluster expansions, van der Waal's gas, and mean-field theory. 8.333 is the first course in a two-semester sequence on statistical mechanics. Basic principles are examined in 8.333: the laws of thermodynamics and the concepts of temperature, work, heat, and entropy. Postulates of classical statistical mechanics, micro canonical, canonical, and grand canonical distributions; applications to lattice vibrations, ideal gas, photon gas. Quantum statistical mechanics; Fermi and Bose systems. Interacting systems: cluster expansions, van der Waal's gas, and mean-field theory.Subjects

hermodynamics | hermodynamics | entropy | entropy | mehanics | mehanics | microcanonical distributions | microcanonical distributions | canonical distributions | canonical distributions | grand canonical distributions | grand canonical distributions | lattice vibrations | lattice vibrations | ideal gas | ideal gas | photon gas | photon gas | quantum statistical mechanics | quantum statistical mechanics | Fermi systems | Fermi systems | Bose systems | Bose systems | cluster expansions | cluster expansions | van der Waal's gas | van der Waal's gas | mean-field theory | mean-field theoryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata18.311 Principles of Applied Mathematics (MIT) 18.311 Principles of Applied Mathematics (MIT)

Description

Discussion of computational and modeling issues. Nonlinear dynamical systems; nonlinear waves; diffusion; stability; characteristics; nonlinear steepening, breaking and shock formation; conservation laws; first-order partial differential equations; finite differences; numerical stability; etc. Applications to traffic problems, flows in rivers, internal waves, mechanical vibrations and other problems in the physical world.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. MATLAB® is a trademark of The MathWorks, Inc. Discussion of computational and modeling issues. Nonlinear dynamical systems; nonlinear waves; diffusion; stability; characteristics; nonlinear steepening, breaking and shock formation; conservation laws; first-order partial differential equations; finite differences; numerical stability; etc. Applications to traffic problems, flows in rivers, internal waves, mechanical vibrations and other problems in the physical world.Technical RequirementsMATLAB® software is required to run the .m files found on this course site. MATLAB® is a trademark of The MathWorks, Inc.Subjects

Nonlinear dynamical systems | Nonlinear dynamical systems | nonlinear waves | nonlinear waves | diffusion | diffusion | stability | stability | characteristics | characteristics | nonlinear steepening | nonlinear steepening | breaking and shock formation | breaking and shock formation | conservation laws | conservation laws | first-order partial differential equations | first-order partial differential equations | finite differences | finite differences | numerical stability | numerical stability | traffic problems | traffic problems | flows in rivers | flows in rivers | internal waves | internal waves | mechanical vibrations | mechanical vibrationsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.003SC Engineering Dynamics (MIT) 2.003SC Engineering Dynamics (MIT)

Description

Includes audio/video content: AV lectures. This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems. Includes audio/video content: AV lectures. This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.Subjects

dynamics and vibrations | dynamics and vibrations | lumped-parameter models | lumped-parameter models | kinematics | kinematics | momentum | momentum | systems of particles and rigid bodies | systems of particles and rigid bodies | work-energy concepts | work-energy concepts | virtual displacements and virtual work | virtual displacements and virtual work | Lagrange's equations | Lagrange's equations | equations of motion | equations of motion | linear stability analysis | linear stability analysis | free and forced vibration | free and forced vibration | linear multi-degree of freedom models | linear multi-degree of freedom models | matrix eigenvalue problems | matrix eigenvalue problemsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.003 Modeling Dynamics and Control I (MIT) 2.003 Modeling Dynamics and Control I (MIT)

Description

Includes audio/video content: AV special element video. This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered. Includes audio/video content: AV special element video. This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.Subjects

modeling | modeling | analysis | analysis | dynamic | dynamic | systems | systems | mechanical | mechanical | translation | translation | uniaxial | uniaxial | rotation | rotation | electrical | electrical | circuits | circuits | coupling | coupling | levers | levers | gears | gears | electro-mechanical | electro-mechanical | devices | devices | linear | linear | differential | differential | equations | equations | state-determined | state-determined | Laplace | Laplace | transforms | transforms | transfer | transfer | functions | functions | frequency | frequency | response | response | Bode | Bode | vibrations | vibrations | modal | modal | open-loop | open-loop | closed-loop | closed-loop | control | control | instability | instability | time-domain | time-domain | controller | controller | frequency-domain | frequency-domainLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.003J Dynamics and Control I (MIT) 2.003J Dynamics and Control I (MIT)

Description

Introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Kinematics. Force-momentum formulation for systems of particles and rigid bodies in planar motion. Work-energy concepts. Virtual displacements and virtual work. Lagrange's equations for systems of particles and rigid bodies in planar motion. Linearization of equations of motion. Linear stability analysis of mechanical systems. Free and forced vibration of linear multi-degree of freedom models of mechanical systems; matrix eigenvalue problems. Introduction to numerical methods and MATLAB® to solve dynamics and vibrations problems. Introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Kinematics. Force-momentum formulation for systems of particles and rigid bodies in planar motion. Work-energy concepts. Virtual displacements and virtual work. Lagrange's equations for systems of particles and rigid bodies in planar motion. Linearization of equations of motion. Linear stability analysis of mechanical systems. Free and forced vibration of linear multi-degree of freedom models of mechanical systems; matrix eigenvalue problems. Introduction to numerical methods and MATLAB® to solve dynamics and vibrations problems.Subjects

dynamics and vibrations of lumped-parameter models | dynamics and vibrations of lumped-parameter models | mechanical systems | mechanical systems | Kinematics | Kinematics | Force-momentum formulation | Force-momentum formulation | systems of particles | systems of particles | rigid bodies in planar motion | rigid bodies in planar motion | Work-energy concepts | Work-energy concepts | Virtual displacements | Virtual displacements | virtual work | virtual work | Lagrange's equations | Lagrange's equations | Linearization of equations of motion | Linearization of equations of motion | Linear stability analysis | Linear stability analysis | Free vibration | Free vibration | forced vibration | forced vibration | linear multi-degree of freedom models | linear multi-degree of freedom models | matrix eigenvalue problems | matrix eigenvalue problems | numerical methods | numerical methods | MATLAB | MATLABLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.034J Nonlinear Dynamics and Waves (MIT) 2.034J Nonlinear Dynamics and Waves (MIT)

Description

This graduate-level course provides a unified treatment of nonlinear oscillations and wave phenomena with applications to mechanical, optical, geophysical, fluid, electrical and flow-structure interaction problems. This graduate-level course provides a unified treatment of nonlinear oscillations and wave phenomena with applications to mechanical, optical, geophysical, fluid, electrical and flow-structure interaction problems.Subjects

nonlinear oscillations | nonlinear oscillations | wave phenomena | wave phenomena | flow-structure interaction problems | flow-structure interaction problems | nonlinear free and forced vibrations | nonlinear free and forced vibrations | nonlinear resonances | nonlinear resonances | self-excited oscillations | self-excited oscillations | lock-in phenomena | lock-in phenomena | nonlinear dispersive and nondispersive waves | nonlinear dispersive and nondispersive waves | resonant wave interactions | resonant wave interactions | propagation of wave pulses | propagation of wave pulses | nonlinear Schrodinger equation | nonlinear Schrodinger equation | nonlinear long waves and breaking | nonlinear long waves and breaking | theory of characteristics | theory of characteristics | the Korteweg-de Vries equation | the Korteweg-de Vries equation | solitons and solitary wave interactions | solitons and solitary wave interactions | stability of shear flows | stability of shear flowsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.032 Dynamics (MIT) 2.032 Dynamics (MIT)

Description

This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas. This course reviews momentum and energy principles, and then covers the following topics: Hamilton's principle and Lagrange's equations; three-dimensional kinematics and dynamics of rigid bodies; steady motions and small deviations therefrom, gyroscopic effects, and causes of instability; free and forced vibrations of lumped-parameter and continuous systems; nonlinear oscillations and the phase plane; nonholonomic systems; and an introduction to wave propagation in continuous systems. This course was originally developed by Professor T. Akylas.Subjects

motion | motion | momentum | momentum | work-energy principle | work-energy principle | degrees of freedom | degrees of freedom | Lagrange's equations | Lagrange's equations | D'Alembert's principle | D'Alembert's principle | Hamilton's principle | Hamilton's principle | gyroscope | gyroscope | gyroscopic effect | gyroscopic effect | steady motions | steady motions | nature of small deviations | nature of small deviations | natural modes | natural modes | natural frequencies for continuous and lumped parameter systems | natural frequencies for continuous and lumped parameter systems | mode shapes | mode shapes | forced vibrations | forced vibrations | dynamic stability theory | dynamic stability theory | instability | instabilityLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata6.551J Acoustics of Speech and Hearing (MIT) 6.551J Acoustics of Speech and Hearing (MIT)

Description

The Acoustics of Speech and Hearing is an H-Level graduate course that reviews the physical processes involved in the production, propagation and reception of human speech. Particular attention is paid to how the acoustics and mechanics of the speech and auditory system define what sounds we are capable of producing and what sounds we can sense. Areas of discussion include: the acoustic cues used in determining the direction of a sound source, the acoustic and mechanical mechanisms involved in speech production and the acoustic and mechanical mechanism used to transduce and analyze sounds in the ear. The Acoustics of Speech and Hearing is an H-Level graduate course that reviews the physical processes involved in the production, propagation and reception of human speech. Particular attention is paid to how the acoustics and mechanics of the speech and auditory system define what sounds we are capable of producing and what sounds we can sense. Areas of discussion include: the acoustic cues used in determining the direction of a sound source, the acoustic and mechanical mechanisms involved in speech production and the acoustic and mechanical mechanism used to transduce and analyze sounds in the ear.Subjects

HST.714 | HST.714 | sound | sound | speech communication | speech communication | human anatomy | human anatomy | speech production | speech production | sound production | sound production | airflow | airflow | filtering | filtering | vocal tract | vocal tract | auditory physiology | auditory physiology | acoustical waves | acoustical waves | mechanical vibrations | mechanical vibrations | cochlear structures | cochlear structures | sound perception | sound perception | spatial hearing | spatial hearing | masking | masking | auditory frequency selectivity | auditory frequency selectivity | physical processes | physical processes | sound propagation | sound propagation | human speech | human speech | acoustics | acoustics | speech mechanics | speech mechanics | auditory system | auditory system | sound direction | sound direction | ear | ear | 6.551 | 6.551License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV lectures. Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: Thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles. Includes audio/video content: AV lectures. Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: Thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles.Subjects

thermodynamics | thermodynamics | entropy | entropy | mehanics | mehanics | microcanonical distributions | microcanonical distributions | canonical distributions | canonical distributions | grand canonical distributions | grand canonical distributions | lattice vibrations | lattice vibrations | ideal gas | ideal gas | photon gas | photon gas | quantum statistical mechanics | quantum statistical mechanics | Fermi systems | Fermi systems | Bose systems | Bose systems | cluster expansions | cluster expansions | van der Waal's gas | van der Waal's gas | mean-field theory | mean-field theoryLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.09 Classical Mechanics III (MIT) 8.09 Classical Mechanics III (MIT)

Description

This course covers Lagrangian and Hamiltonian mechanics, systems with constraints, rigid body dynamics, vibrations, central forces, Hamilton-Jacobi theory, action-angle variables, perturbation theory, and continuous systems. It provides an introduction to ideal and viscous fluid mechanics, including turbulence, as well as an introduction to nonlinear dynamics, including chaos. This course covers Lagrangian and Hamiltonian mechanics, systems with constraints, rigid body dynamics, vibrations, central forces, Hamilton-Jacobi theory, action-angle variables, perturbation theory, and continuous systems. It provides an introduction to ideal and viscous fluid mechanics, including turbulence, as well as an introduction to nonlinear dynamics, including chaos.Subjects

Lagrangian mechanics | Lagrangian mechanics | Hamiltonian mechanics | Hamiltonian mechanics | systems with constraints | systems with constraints | rigid body dynamics | rigid body dynamics | vibrations | vibrations | central forces | central forces | Hamilton-Jacobi theory | Hamilton-Jacobi theory | action-angle variables | action-angle variables | perturbation theory | perturbation theory | continuous systems | continuous systems | ideal fluid mechanics | ideal fluid mechanics | viscous fluid mechanics | viscous fluid mechanics | turbulence | turbulence | nonlinear dynamics | nonlinear dynamics | chaos | chaosLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Includes audio/video content: AV lectures. 8.03 Physics III: Vibrations and Waves is the third course in the core physics curriculum at MIT, following 8.01 Physics I: Classical Mechanics and 8.02 Physics II: Electricity and Magnetism. Topics include mechanical vibrations and waves, electromagnetic waves, and optics. These Problem Solving Help Videos provide step-by-step solutions to sample problems. Also included is information about how Physics III is typically taught on the MIT campus. Instructor Insights are shared by Professor Wit Busza who has taught Physics III and its associated recitation sessions many times. Professor Busza's insights focus on his approach to problem solving, strategies for supporting students as they solve problems, and common sources of confusion for students i Includes audio/video content: AV lectures. 8.03 Physics III: Vibrations and Waves is the third course in the core physics curriculum at MIT, following 8.01 Physics I: Classical Mechanics and 8.02 Physics II: Electricity and Magnetism. Topics include mechanical vibrations and waves, electromagnetic waves, and optics. These Problem Solving Help Videos provide step-by-step solutions to sample problems. Also included is information about how Physics III is typically taught on the MIT campus. Instructor Insights are shared by Professor Wit Busza who has taught Physics III and its associated recitation sessions many times. Professor Busza's insights focus on his approach to problem solving, strategies for supporting students as they solve problems, and common sources of confusion for students iSubjects

vibrations | vibrations | waves | waves | mass on a spring | mass on a spring | LC circuit | LC circuit | simple harmonic motion | simple harmonic motion | harmonic oscillators | harmonic oscillators | damping | damping | coupled oscillators | coupled oscillators | traveling waves | traveling waves | standing waves | standing waves | electromagnetic waves | electromagnetic waves | interference | interference | radiating electromagnetic waves | radiating electromagnetic waves | Quality Factor Q | Quality Factor QLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allavcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles. Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles.Subjects

Thermodynamics | Thermodynamics | entropy. mehanics | entropy. mehanics | microcanonical distributions | microcanonical distributions | canonical distributions | canonical distributions | grand canonical distributions; lattice vibrations | grand canonical distributions; lattice vibrations | ideal gas | ideal gas | photon gas. | photon gas. | quantum statistical mechanics; Fermi systems | quantum statistical mechanics; Fermi systems | Bose systems | Bose systems | cluster expansions | cluster expansions | van der Waal's gas | van der Waal's gas | mean-field theory. | mean-field theory.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata8.333 Statistical Mechanics I: Statistical Mechanics of Particles (MIT)

Description

Statistical Mechanics is a probabilistic approach to equilibrium properties of large numbers of degrees of freedom. In this two-semester course, basic principles are examined. Topics include: thermodynamics, probability theory, kinetic theory, classical statistical mechanics, interacting systems, quantum statistical mechanics, and identical particles.Subjects

Thermodynamics | entropy. mehanics | microcanonical distributions | canonical distributions | grand canonical distributions; lattice vibrations | ideal gas | photon gas. | quantum statistical mechanics; Fermi systems | Bose systems | cluster expansions | van der Waal's gas | mean-field theory.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.003 Modeling Dynamics and Control I (MIT)

Description

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.Subjects

modeling | analysis | dynamic | systems | mechanical | translation | uniaxial | rotation | electrical | circuits | coupling | levers | gears | electro-mechanical | devices | linear | differential | equations | state-determined | Laplace | transforms | transfer | functions | frequency | response | Bode | vibrations | modal | open-loop | closed-loop | control | instability | time-domain | controller | frequency-domainLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allportuguesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.003 Modeling Dynamics and Control I (MIT)

Description

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.Subjects

modeling | analysis | dynamic | systems | mechanical | translation | uniaxial | rotation | electrical | circuits | coupling | levers | gears | electro-mechanical | devices | linear | differential | equations | state-determined | Laplace | transforms | transfer | functions | frequency | response | Bode | vibrations | modal | open-loop | closed-loop | control | instability | time-domain | controller | frequency-domainLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.003 Modeling Dynamics and Control I (MIT)

Description

This course is the first of a two term sequence in modeling, analysis and control of dynamic systems. The various topics covered are as follows: mechanical translation, uniaxial rotation, electrical circuits and their coupling via levers, gears and electro-mechanical devices, analytical and computational solution of linear differential equations, state-determined systems, Laplace transforms, transfer functions, frequency response, Bode plots, vibrations, modal analysis, open- and closed-loop control, instability, time-domain controller design, and introduction to frequency-domain control design techniques. Case studies of engineering applications are also covered.Subjects

modeling | analysis | dynamic | systems | mechanical | translation | uniaxial | rotation | electrical | circuits | coupling | levers | gears | electro-mechanical | devices | linear | differential | equations | state-determined | Laplace | transforms | transfer | functions | frequency | response | Bode | vibrations | modal | open-loop | closed-loop | control | instability | time-domain | controller | frequency-domainLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allspanishcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataElectromagnetism (mainstream physics 2nd year)

Description

Authors: David Aschman, Andy Buffler VIBRATIONS AND WAVES: Harmonic oscillations, damped and forced oscillations, resonance, Fourier analysis, harmonic chains, waves, dispersion, interference, diffraction. Clicked 315 times. Last clicked 09/28/2014 - 03:25. Teaching & Learning Context: <p>PHY2014F is a second-year half course, aimed primarily at students who are majoring in physics.</p>Subjects

Physics | Science | Downloadable Documents | Text/HTML Webpages | Lecture Notes | English | Post-secondary | electromagnetism | electrostatics | vector calculus | vibrations and wavesLicense

http://creativecommons.org/licenses/by/2.5/za/Site sourced from

http://opencontent.uct.ac.za/recent-posts/feed.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata