Searching for vorticity : 23 results found | RSS Feed for this search

12.804 Large-scale Flow Dynamics Lab (MIT) 12.804 Large-scale Flow Dynamics Lab (MIT)

Description

12.804 is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices. 12.804 is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices.Subjects

flow dynamics laboratory | flow dynamics laboratory | oceanic | oceanic | atmospheric | atmospheric | quasi-balanced flows | quasi-balanced flows | computational models | computational models | rotating tank experiments | rotating tank experiments | potential vorticity conservation | potential vorticity conservation | potential vorticity inversion | potential vorticity inversion | Rossby waves | Rossby waves | Rossby wave propagation | Rossby wave propagation | baroclinic instability | baroclinic instability | vortices | vorticesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course introduces the students to dynamics of large-scale circulations in oceans and atmospheres. Basic concepts include mass and momentum conservation, hydrostatic and geostrophic balance, and pressure and other vertical coordinates. It covers the topics of fundamental conservation and balance principles for large-scale flow, generation and dissipation of quasi-balanced eddies, as well as equilibrated quasi-balanced systems. Examples of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments can be found in the accompaniment laboratory course 12.804, Large-scale Flow Dynamics Lab. This course introduces the students to dynamics of large-scale circulations in oceans and atmospheres. Basic concepts include mass and momentum conservation, hydrostatic and geostrophic balance, and pressure and other vertical coordinates. It covers the topics of fundamental conservation and balance principles for large-scale flow, generation and dissipation of quasi-balanced eddies, as well as equilibrated quasi-balanced systems. Examples of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments can be found in the accompaniment laboratory course 12.804, Large-scale Flow Dynamics Lab.Subjects

hydrostatic balance | hydrostatic balance | geostrophic balance | geostrophic balance | barotropic vorticity equation | barotropic vorticity equation | shallow water equations | shallow water equations | geostrophic adjustment | geostrophic adjustment | stratified atmospheres and oceans | stratified atmospheres and oceans | thermodynamics | thermodynamics | quasi-geostrophic equations | quasi-geostrophic equations | pseudo potential vorticity | pseudo potential vorticity | Rayleigh | Rayleigh | Fjortoft and Chanrey-Stern theorems | Fjortoft and Chanrey-Stern theorems | frontogenesis | frontogenesis | semigeostrophy. | semigeostrophy.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLAB This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLABSubjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derviative | substantial derviative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamics | Incompressible | IncompressibleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT) 2.25 Advanced Fluid Mechanics (MIT)

Description

Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. Boundary layers and separation. Circulation and vorticity theorems. Potential flow. Introduction to turbulence. Lift and drag. Surface tension and surface tension driven flows. Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. Boundary layers and separation. Circulation and vorticity theorems. Potential flow. Introduction to turbulence. Lift and drag. Surface tension and surface tension driven flows.Subjects

fluid dynamics | | fluid dynamics | | Mass conservation | | Mass conservation | | Navier-Stokes equation | | Navier-Stokes equation | | viscous flows | | viscous flows | | dimensional analysis | | dimensional analysis | | Lubrication theory | | Lubrication theory | | Boundary layers | | Boundary layers | | vorticity theorems | | vorticity theorems | | Potential flow | | Potential flow | | turbulence | turbulenceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT) 2.25 Advanced Fluid Mechanics (MIT)

Description

This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance. This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance.Subjects

fluid dynamics | fluid dynamics | Mass conservation | Mass conservation | Navier-Stokes equation | Navier-Stokes equation | viscous flows | viscous flows | dimensional analysis | dimensional analysis | Lubrication theory | Lubrication theory | boundary layer | boundary layer | lift | lift | drag | drag | vorticity theorems | vorticity theorems | Potential flow | Potential flow | turbulence | turbulence | Bernoulli equation | Bernoulli equation | potenial flow | potenial flow | inviscid flow | inviscid flow | flight | flight | surface tension | surface tensionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.20 Marine Hydrodynamics (13.021) (MIT) 2.20 Marine Hydrodynamics (13.021) (MIT)

Description

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.021. In 2005, In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.021. In 2005,Subjects

fundamentals of fluid mechanics | fundamentals of fluid mechanics | naval architecture | naval architecture | ocean science and engineering | ocean science and engineering | transport theorem | transport theorem | conservation principles | conservation principles | Navier-Stokes' equation | Navier-Stokes' equation | dimensional analysis | dimensional analysis | ideal and potential flows | ideal and potential flows | vorticity and Kelvin's theorem | vorticity and Kelvin's theorem | hydrodynamic forces in potential flow | hydrodynamic forces in potential flow | D'Alembert's paradox | D'Alembert's paradox | added-mass | added-mass | slender-body theory. Viscous-fluid flow | slender-body theory. Viscous-fluid flow | laminar and turbulent boundary layers | laminar and turbulent boundary layers | model testing | model testing | scaling laws | scaling laws | application of potential theory to surface waves | application of potential theory to surface waves | energy transport | energy transport | wave/body forces | wave/body forces | linearized theory of lifting surfaces | linearized theory of lifting surfaces | experimental project in the towing tank or propeller tunnel | experimental project in the towing tank or propeller tunnelLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.804 Large-scale Flow Dynamics Lab (MIT) 12.804 Large-scale Flow Dynamics Lab (MIT)

Description

This course is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices. This course is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices.Subjects

geostrophic adjustment | geostrophic adjustment | potential vorticity | potential vorticity | Rossby waves | Rossby waves | Frontal Waves | Frontal Waves | baroclinic instability | baroclinic instability | isolated vortices | isolated vortices | ageostrophic motion | ageostrophic motion | flow dynamics | flow dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability. This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability.Subjects

geophysical wave motion | geophysical wave motion | rotating | stratified | and rotating-stratified fluids | rotating | stratified | and rotating-stratified fluids | general wave concepts | general wave concepts | phase | phase | group velocity | group velocity | dynamics and kinematics of gravity waves | dynamics and kinematics of gravity waves | dispersion | dispersion | energy flux | energy flux | initial value problems | initial value problems | internal and inertial waves | internal and inertial waves | Kelvin | Kelvin | Poincare | Poincare | and Rossby waves | and Rossby waves | homogeneous and stratified fluids | homogeneous and stratified fluids | Laplace tidal equations | Laplace tidal equations | equatorial waves | equatorial waves | resonant interactions | resonant interactions | potential vorticity | potential vorticity | wave-mean flow interactions | wave-mean flow interactions | instability | instability | 12. Kelvin | Poincare | and Rossby waves | 12. Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | internal gravity waves | internal gravity waves | surface gravity waves | surface gravity waves | rotation | rotation | large-scale hydrostatic motions | large-scale hydrostatic motions | vertical structure equation | vertical structure equation | equatorial ?-plane | equatorial ?-plane | Stratified Quasi-Geostrophic Motion | Stratified Quasi-Geostrophic MotionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses-12.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.100 Aerodynamics (MIT) 16.100 Aerodynamics (MIT)

Description

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.Subjects

aerodynamics | aerodynamics | airflow | airflow | air | air | body | body | aircraft | aircraft | aerodynamic modes | aerodynamic modes | aero | aero | forces | forces | flow | flow | computational | computational | CFD | CFD | aerodynamic analysis | aerodynamic analysis | lift | lift | drag | drag | potential flows | potential flows | imcompressible | imcompressible | supersonic | supersonic | subsonic | subsonic | panel method | panel method | vortex lattice method | vortex lattice method | boudary layer | boudary layer | transition | transition | turbulence | turbulence | inviscid | inviscid | viscous | viscous | euler | euler | navier-stokes | navier-stokes | wind tunnel | wind tunnel | flow similarity | flow similarity | non-dimensional | non-dimensional | mach number | mach number | reynolds number | reynolds number | integral momentum | integral momentum | airfoil | airfoil | wing | wing | stall | stall | friction drag | friction drag | induced drag | induced drag | wave drag | wave drag | pressure drag | pressure drag | fluid element | fluid element | shear strain | shear strain | normal strain | normal strain | vorticity | vorticity | divergence | divergence | substantial derivative | substantial derivative | laminar | laminar | displacement thickness | displacement thickness | momentum thickness | momentum thickness | skin friction | skin friction | separation | separation | velocity profile | velocity profile | 2-d panel | 2-d panel | 3-d vortex | 3-d vortex | thin airfoil | thin airfoil | lifting line | lifting line | aspect ratio | aspect ratio | twist | twist | camber | camber | wing loading | wing loading | roll moments | roll moments | finite volume approximation | finite volume approximation | shocks | shocks | expansion fans | expansion fans | shock-expansion theory | shock-expansion theory | transonic | transonic | critical mach number | critical mach number | wing sweep | wing sweep | Kutta condition | Kutta condition | team project | team project | blended-wing-body | blended-wing-body | computational fluid dynamics | computational fluid dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.13 Aerodynamics of Viscous Fluids (MIT) 16.13 Aerodynamics of Viscous Fluids (MIT)

Description

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included. The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.Subjects

aerodynamics | aerodynamics | viscous fluids | viscous fluids | viscosity | viscosity | fundamental theorem of kinematics | fundamental theorem of kinematics | convection | convection | vorticity | vorticity | strain | strain | Eulerian description | Eulerian description | Lagrangian description | Lagrangian description | conservation of mass | conservation of mass | continuity | continuity | conservation of momentum | conservation of momentum | stress tensor | stress tensor | newtonian fluid | newtonian fluid | circulation | circulation | Navier-Stokes | Navier-Stokes | similarity | similarity | dimensional analysis | dimensional analysis | thin shear later approximation | thin shear later approximation | TSL coordinates | TSL coordinates | boundary conditions | boundary conditions | shear later categories | shear later categories | local scaling | local scaling | Falkner-Skan flows | Falkner-Skan flows | solution techniques | solution techniques | finite difference methods | finite difference methods | Newton-Raphson | Newton-Raphson | integral momentum equation | integral momentum equation | Thwaites method | Thwaites method | integral kinetic energy equation | integral kinetic energy equation | dissipation | dissipation | asymptotic perturbation | asymptotic perturbation | displacement body | displacement body | transpiration | transpiration | form drag | form drag | stall | stall | interacting boundary layer theory | interacting boundary layer theory | stability | stability | transition | transition | small-perturbation | small-perturbation | Orr-Somemerfeld | Orr-Somemerfeld | temporal amplification | temporal amplification | spatial amplification | spatial amplification | Reynolds | Reynolds | Prandtl | Prandtl | turbulent boundary layer | turbulent boundary layer | wake | wake | wall layers | wall layers | inner variables | inner variables | outer variables | outer variables | roughness | roughness | Clauser | Clauser | Dissipation formula | Dissipation formula | integral closer | integral closer | turbulence modeling | turbulence modeling | transport models | transport models | turbulent shear layers | turbulent shear layers | compressible then shear layers | compressible then shear layers | compressibility | compressibility | temperature profile | temperature profile | heat flux | heat flux | 3D boundary layers | 3D boundary layers | crossflow | crossflow | lateral dilation | lateral dilation | 3D separation | 3D separation | constant-crossflow | constant-crossflow | 3D transition | 3D transition | compressible thin shear layers | compressible thin shear layersLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT) 2.25 Advanced Fluid Mechanics (MIT)

Description

This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows. This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.Subjects

fluid dynamics | fluid dynamics | Mass conservation | Mass conservation | Navier-Stokes equation | Navier-Stokes equation | viscous flows | viscous flows | dimensional analysis | dimensional analysis | Lubrication theory | Lubrication theory | boundary layer | boundary layer | lift | lift | drag | drag | vorticity theorems | vorticity theorems | Potential flow | Potential flow | turbulence | turbulence | Bernoulli equation | Bernoulli equation | potenial flow | potenial flow | inviscid flow | inviscid flow | flight | flight | surface tension | surface tensionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT) 2.25 Advanced Fluid Mechanics (MIT)

Description

This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance. This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance.Subjects

fluid dynamics | fluid dynamics | Mass conservation | Mass conservation | Navier-Stokes equation | Navier-Stokes equation | viscous flows | viscous flows | dimensional analysis | dimensional analysis | Lubrication theory | Lubrication theory | boundary layer | boundary layer | lift | lift | drag | drag | vorticity theorems | vorticity theorems | Potential flow | Potential flow | turbulence | turbulence | Bernoulli equation | Bernoulli equation | potenial flow | potenial flow | inviscid flow | inviscid flow | flight | flight | surface tension | surface tensionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from

http://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.804 Large-scale Flow Dynamics Lab (MIT)

Description

12.804 is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices.Subjects

flow dynamics laboratory | oceanic | atmospheric | quasi-balanced flows | computational models | rotating tank experiments | potential vorticity conservation | potential vorticity inversion | Rossby waves | Rossby wave propagation | baroclinic instability | vorticesLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.803 Quasi-Balanced Circulations in Oceans and Atmospheres (MIT)

Description

This course introduces the students to dynamics of large-scale circulations in oceans and atmospheres. Basic concepts include mass and momentum conservation, hydrostatic and geostrophic balance, and pressure and other vertical coordinates. It covers the topics of fundamental conservation and balance principles for large-scale flow, generation and dissipation of quasi-balanced eddies, as well as equilibrated quasi-balanced systems. Examples of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments can be found in the accompaniment laboratory course 12.804, Large-scale Flow Dynamics Lab.Subjects

hydrostatic balance | geostrophic balance | barotropic vorticity equation | shallow water equations | geostrophic adjustment | stratified atmospheres and oceans | thermodynamics | quasi-geostrophic equations | pseudo potential vorticity | Rayleigh | Fjortoft and Chanrey-Stern theorems | frontogenesis | semigeostrophy.License

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT)

Description

This course surveys the principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua, the Navier-Stokes equation for viscous flows, similarity and dimensional analysis, lubrication theory, boundary layers and separation, circulation and vorticity theorems, potential flow, an introduction to turbulence, lift and drag, surface tension and surface tension driven flows. The class assumes students have had one prior undergraduate class in the area of fluid mechanics. Emphasis is placed on being able to formulate and solve typical problems of engineering importance.Subjects

fluid dynamics | Mass conservation | Navier-Stokes equation | viscous flows | dimensional analysis | Lubrication theory | boundary layer | lift | drag | vorticity theorems | Potential flow | turbulence | Bernoulli equation | potenial flow | inviscid flow | flight | surface tensionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem. Technical RequirementsFile decompression software, such as Winzip® or StuffIt®, is required to open the .tar files found on this course site. MATLABSubjects

aerodynamics | airflow | air | body | aircraft | aerodynamic modes | aero | forces | flow | computational | CFD | aerodynamic analysis | lift | drag | potential flows | imcompressible | supersonic | subsonic | panel method | vortex lattice method | boudary layer | transition | turbulence | inviscid | viscous | euler | navier-stokes | wind tunnel | flow similarity | non-dimensional | mach number | reynolds number | integral momentum | airfoil | wing | stall | friction drag | induced drag | wave drag | pressure drag | fluid element | shear strain | normal strain | vorticity | divergence | substantial derviative | laminar | displacement thickness | momentum thickness | skin friction | separation | velocity profile | 2-d panel | 3-d vortex | thin airfoil | lifting line | aspect ratio | twist | camber | wing loading | roll moments | finite volume approximation | shocks | expansion fans | shock-expansion theory | transonic | critical mach number | wing sweep | Kutta condition | team project | blended-wing-body | computational fluid dynamics | IncompressibleLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT)

Description

Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. Boundary layers and separation. Circulation and vorticity theorems. Potential flow. Introduction to turbulence. Lift and drag. Surface tension and surface tension driven flows.Subjects

fluid dynamics | | Mass conservation | | Navier-Stokes equation | | viscous flows | | dimensional analysis | | Lubrication theory | | Boundary layers | | vorticity theorems | | Potential flow | | turbulenceLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allarchivedcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.25 Advanced Fluid Mechanics (MIT)

Description

This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow; introduction to turbulence; lift and drag; surface tension and surface tension driven flows.Subjects

fluid dynamics | Mass conservation | Navier-Stokes equation | viscous flows | dimensional analysis | Lubrication theory | boundary layer | lift | drag | vorticity theorems | Potential flow | turbulence | Bernoulli equation | potenial flow | inviscid flow | flight | surface tensionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata2.20 Marine Hydrodynamics (13.021) (MIT)

Description

In this course the fundamentals of fluid mechanics are developed in the context of naval architecture and ocean science and engineering. The various topics covered are: Transport theorem and conservation principles, Navier-Stokes' equation, dimensional analysis, ideal and potential flows, vorticity and Kelvin's theorem, hydrodynamic forces in potential flow, D'Alembert's paradox, added-mass, slender-body theory, viscous-fluid flow, laminar and turbulent boundary layers, model testing, scaling laws, application of potential theory to surface waves, energy transport, wave/body forces, linearized theory of lifting surfaces, and experimental project in the towing tank or propeller tunnel.This subject was originally offered in Course 13 (Department of Ocean Engineering) as 13.021. In 2005,Subjects

fundamentals of fluid mechanics | naval architecture | ocean science and engineering | transport theorem | conservation principles | Navier-Stokes' equation | dimensional analysis | ideal and potential flows | vorticity and Kelvin's theorem | hydrodynamic forces in potential flow | D'Alembert's paradox | added-mass | slender-body theory. Viscous-fluid flow | laminar and turbulent boundary layers | model testing | scaling laws | application of potential theory to surface waves | energy transport | wave/body forces | linearized theory of lifting surfaces | experimental project in the towing tank or propeller tunnelLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadataDescription

This course extends fluid mechanic concepts from Unified Engineering to the aerodynamic performance of wings and bodies in sub/supersonic regimes. 16.100 generally has four components: subsonic potential flows, including source/vortex panel methods; viscous flows, including laminar and turbulent boundary layers; aerodynamics of airfoils and wings, including thin airfoil theory, lifting line theory, and panel method/interacting boundary layer methods; and supersonic and hypersonic airfoil theory. Course material varies each year depending upon the focus of the design problem.Subjects

aerodynamics | airflow | air | body | aircraft | aerodynamic modes | aero | forces | flow | computational | CFD | aerodynamic analysis | lift | drag | potential flows | imcompressible | supersonic | subsonic | panel method | vortex lattice method | boudary layer | transition | turbulence | inviscid | viscous | euler | navier-stokes | wind tunnel | flow similarity | non-dimensional | mach number | reynolds number | integral momentum | airfoil | wing | stall | friction drag | induced drag | wave drag | pressure drag | fluid element | shear strain | normal strain | vorticity | divergence | substantial derivative | laminar | displacement thickness | momentum thickness | skin friction | separation | velocity profile | 2-d panel | 3-d vortex | thin airfoil | lifting line | aspect ratio | twist | camber | wing loading | roll moments | finite volume approximation | shocks | expansion fans | shock-expansion theory | transonic | critical mach number | wing sweep | Kutta condition | team project | blended-wing-body | computational fluid dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata16.13 Aerodynamics of Viscous Fluids (MIT)

Description

The major focus of 16.13 is on boundary layers, and boundary layer theory subject to various flow assumptions, such as compressibility, turbulence, dimensionality, and heat transfer. Parameters influencing aerodynamic flows and transition and influence of boundary layers on outer potential flow are presented, along with associated stall and drag mechanisms. Numerical solution techniques and exercises are included.Subjects

aerodynamics | viscous fluids | viscosity | fundamental theorem of kinematics | convection | vorticity | strain | Eulerian description | Lagrangian description | conservation of mass | continuity | conservation of momentum | stress tensor | newtonian fluid | circulation | Navier-Stokes | similarity | dimensional analysis | thin shear later approximation | TSL coordinates | boundary conditions | shear later categories | local scaling | Falkner-Skan flows | solution techniques | finite difference methods | Newton-Raphson | integral momentum equation | Thwaites method | integral kinetic energy equation | dissipation | asymptotic perturbation | displacement body | transpiration | form drag | stall | interacting boundary layer theory | stability | transition | small-perturbation | Orr-Somemerfeld | temporal amplification | spatial amplification | Reynolds | Prandtl | turbulent boundary layer | wake | wall layers | inner variables | outer variables | roughness | Clauser | Dissipation formula | integral closer | turbulence modeling | transport models | turbulent shear layers | compressible then shear layers | compressibility | temperature profile | heat flux | 3D boundary layers | crossflow | lateral dilation | 3D separation | constant-crossflow | 3D transition | compressible thin shear layersLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.804 Large-scale Flow Dynamics Lab (MIT)

Description

This course is a laboratory accompaniment to 12.803, Quasi-balanced Circulations in Oceans and Atmospheres. The subject includes analysis of observations of oceanic and atmospheric quasi-balanced flows, computational models, and rotating tank experiments. Student projects illustrate the basic principles of potential vorticity conservation and inversion, Rossby wave propagation, baroclinic instability, and the behavior of isolated vortices.Subjects

geostrophic adjustment | potential vorticity | Rossby waves | Frontal Waves | baroclinic instability | isolated vortices | ageostrophic motion | flow dynamicsLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata12.802 Wave Motions in the Ocean and Atmosphere (MIT)

Description

This course is an introduction to basic ideas of geophysical wave motion in rotating, stratified, and rotating-stratified fluids. Subject begins with general wave concepts of phase and group velocity. It also covers the dynamics and kinematics of gravity waves with a focus on dispersion, energy flux, initial value problems, etc. Also addressed are subject foundation used to study internal and inertial waves, Kelvin, Poincare, and Rossby waves in homogeneous and stratified fluids. Laplace tidal equations are applied to equatorial waves. Other topics include: resonant interactions, potential vorticity, wave-mean flow interactions, and instability.Subjects

geophysical wave motion | rotating | stratified | and rotating-stratified fluids | general wave concepts | phase | group velocity | dynamics and kinematics of gravity waves | dispersion | energy flux | initial value problems | internal and inertial waves | Kelvin | Poincare | and Rossby waves | homogeneous and stratified fluids | Laplace tidal equations | equatorial waves | resonant interactions | potential vorticity | wave-mean flow interactions | instability | 12. Kelvin | Poincare | and Rossby waves | Kelvin | Poincare | and Rossby waves | internal gravity waves | surface gravity waves | rotation | large-scale hydrostatic motions | vertical structure equation | equatorial ?-plane | Stratified Quasi-Geostrophic MotionLicense

Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from

https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution

Click to get HTML | Click to get attribution | Click to get URLAll metadata

See all metadata