Searching for waves in media : 3 results found | RSS Feed for this search
6.632 Electromagnetic Wave Theory (MIT) 6.632 Electromagnetic Wave Theory (MIT)
Description
6.632 is a graduate subject on electromagnetic wave theory, emphasizing mathematical approaches, problem solving, and physical interpretation. Topics covered include: waves in media, equivalence principle, duality and complementarity, Huygens' principle, Fresnel and Fraunhofer diffraction, dyadic Green's functions, Lorentz transformation, and Maxwell-Minkowski theory. Examples deal with limiting cases of Maxwell's theory and diffraction and scattering of electromagnetic waves. 6.632 is a graduate subject on electromagnetic wave theory, emphasizing mathematical approaches, problem solving, and physical interpretation. Topics covered include: waves in media, equivalence principle, duality and complementarity, Huygens' principle, Fresnel and Fraunhofer diffraction, dyadic Green's functions, Lorentz transformation, and Maxwell-Minkowski theory. Examples deal with limiting cases of Maxwell's theory and diffraction and scattering of electromagnetic waves.Subjects
electromagnetic wave theory | electromagnetic wave theory | waves in media | waves in media | equivalence principle | equivalence principle | duality | duality | complementarity | complementarity | Huygens' principle | Huygens' principle | Fresnel diffraction | Fresnel diffraction | Fraunhofer diffraction | Fraunhofer diffraction | dyadic Green's functions | dyadic Green's functions | Lorentz transformation | Lorentz transformation | Maxwell-Minkowski theory | Maxwell-Minkowski theory | Maxwell | Maxwell | diffraction | diffraction | scattering | scatteringLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see http://ocw.mit.edu/terms/index.htmSite sourced from
http://ocw.mit.edu/rss/all/mit-allcourses-6.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.632 Electromagnetic Wave Theory (MIT)
Description
6.632 is a graduate subject on electromagnetic wave theory, emphasizing mathematical approaches, problem solving, and physical interpretation. Topics covered include: waves in media, equivalence principle, duality and complementarity, Huygens' principle, Fresnel and Fraunhofer diffraction, dyadic Green's functions, Lorentz transformation, and Maxwell-Minkowski theory. Examples deal with limiting cases of Maxwell's theory and diffraction and scattering of electromagnetic waves.Subjects
electromagnetic wave theory | waves in media | equivalence principle | duality | complementarity | Huygens' principle | Fresnel diffraction | Fraunhofer diffraction | dyadic Green's functions | Lorentz transformation | Maxwell-Minkowski theory | Maxwell | diffraction | scatteringLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allsimplifiedchinesecourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata6.632 Electromagnetic Wave Theory (MIT)
Description
6.632 is a graduate subject on electromagnetic wave theory, emphasizing mathematical approaches, problem solving, and physical interpretation. Topics covered include: waves in media, equivalence principle, duality and complementarity, Huygens' principle, Fresnel and Fraunhofer diffraction, dyadic Green's functions, Lorentz transformation, and Maxwell-Minkowski theory. Examples deal with limiting cases of Maxwell's theory and diffraction and scattering of electromagnetic waves.Subjects
electromagnetic wave theory | waves in media | equivalence principle | duality | complementarity | Huygens' principle | Fresnel diffraction | Fraunhofer diffraction | dyadic Green's functions | Lorentz transformation | Maxwell-Minkowski theory | Maxwell | diffraction | scatteringLicense
Content within individual OCW courses is (c) by the individual authors unless otherwise noted. MIT OpenCourseWare materials are licensed by the Massachusetts Institute of Technology under a Creative Commons License (Attribution-NonCommercial-ShareAlike). For further information see https://ocw.mit.edu/terms/index.htmSite sourced from
https://ocw.mit.edu/rss/all/mit-allcourses.xmlAttribution
Click to get HTML | Click to get attribution | Click to get URLAll metadata
See all metadata